K-means聚类算法

K-means聚类算法是最普及的,也是比较简单的聚类算法。可以分为以下几个步骤:
(1)确定K值,也即确定我们要将数据分为多少个组; (2)从数据集中随机选取 K 个数据作为初始中心点;
(3)对集合中每一个数据,计算其与每一个中心点的距离,离那个中心点近,就归那个组;
(4)在每组中按一定的算法重新选择中心点,通常是求每一群的平均值。
(5)如果新的中心点和旧的中心点之间的距离小于某一个设置的阈值(表示重新计算的中心的位置变化不大,趋于稳定,或者说收敛),可以认为我们进行的聚类已经达到期望的结果,算法终止。
(6)如果新的中心点和旧的中心点之间的距离变化很大,需要迭代3~5步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值