【BZOJ 2212】【POI 2011】Tree Rotations

http://www.lydsy.com/JudgeOnline/problem.php?id=2212
自下而上贪心。
需要用权值线段树来记录一个权值区间内的出现次数。
合并线段树时统计逆序对的信息就可以了。
时间复杂度\(O(n\log n)\)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;

const int N = 200003;

int v[N << 1], ch[N << 1][2], n, cnt = 0, root[N << 1];

void read_tree(int x) {
    scanf("%d", &v[x]);
    if (v[x] == 0) {
        ch[x][0] = ++cnt; read_tree(cnt);
        ch[x][1] = ++cnt; read_tree(cnt);
    }
}

int tot = 0;
struct node {
    int sum, l, r;
} T[N * 30];

void update(int &rt, int l, int r, int key) {
    rt = ++tot;
    ++T[tot].sum;
    if (l == r) return;
    int mid = (l + r) >> 1;
    if (key <= mid)
        update(T[tot].l, l, mid, key);
    else
        update(T[tot].r, mid + 1, r, key);
}

ll sum1, sum2, ans = 0;
int merge(int x, int y) {
    if (x == 0 || y == 0) return x + y;
    sum1 += 1ll * T[T[x].l].sum * T[T[y].r].sum;
    sum2 += 1ll * T[T[x].r].sum * T[T[y].l].sum;
    T[x].l = merge(T[x].l, T[y].l);
    T[x].r = merge(T[x].r, T[y].r);
    T[x].sum = T[T[x].l].sum + T[T[x].r].sum;
    return x;
}

void solve(int x) {
    if (v[x]) return;
    solve(ch[x][0]), solve(ch[x][1]);
    sum1 = sum2 = 0;
    root[x] = merge(root[ch[x][0]], root[ch[x][1]]);
    ans += min(sum1, sum2);
}

int main() {
    scanf("%d", &n);
    ++cnt; read_tree(cnt);
    for (int i = 1; i <= cnt; ++i)
        if (v[i])
            update(root[i], 1, n, v[i]);
    
    solve(1);
    printf("%lld\n", ans);
    return 0;
}

转载于:https://www.cnblogs.com/abclzr/p/6623140.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值