什么是高维前缀和
前缀和是算法中常用的一种优化技术,能够将多次区间查询的时间复杂度从 O (n) 降低到 O (1)。高维前缀和则是将这一思想扩展到二维、三维甚至更高维度的情况。
在多维空间中,前缀和表示从原点到该点所构成的超矩形区域内所有元素的和。高维前缀和在动态规划、计数问题、状态压缩等场景中有着广泛应用。
从一维到高维的扩展
- 一维前缀和:
sum[i] = a[1] + a[2] + ... + a[i] - 二维前缀和:
sum[i][j] = 所有a[x][y]的和,其中x ≤ i, y ≤ j - 三维前缀和:
sum[i][j][k] = 所有a[x][y][z]的和,其中x ≤ i, y ≤ j, z ≤ k
高维前缀和的朴素计算方法时间复杂度较高,而位运算可以帮助我们高效地实现高维前缀和。
位运算在高维前缀和中的应用
位运算特别适合处理高维前缀和,因为:
- 二进制表示可以自然地对应多维空间的坐标
- 位操作可以高效地枚举子集和超集
- 位移操作可以方便地在不同维度间切换
高维前缀和的快速计算通常使用 "容斥原理" 和 "按位枚举" 相结合的方法,称为 "子集前缀和" 或 "超集前缀和"。
高维前缀和的实现
下面是使用位运算优化的高维前缀和模板代码:
#include <vector>
#include <cstring>
#include <algorithm>
// 高维前缀和模板类
template<int DIM, int MAXN>
class HighDimPrefixSum {
private:
int size[DIM]; // 各维度的大小
int totalSize; // 总元素数量
int mul[DIM]; // 计算索引的乘数
long long data[MAXN]; // 存储数据
// 将多维坐标转换为一维索引
int toIndex(const int coords[]) const {
int index = 0;
for (int i = 0; i < DIM; ++i) {
index += coords[i] * mul[i];
}
return index;
}
// 将一维索引转换为多维坐标
void toCoords(int index, int coords[]) const {
for (int i = 0; i < DIM; ++i) {
coords[i] = index / mul[i];
index %= mul[i];
}
}
public:
// 构造函数
HighDimPrefixSum(const int s[]) {
memcpy(size, s, sizeof(size));
// 计算乘数
mul[DIM-1] = 1;
for (int i = DIM-2; i >= 0; --i) {
mul[i] = mul[i+1] * size[i+1];
}
// 计算总大小
totalSize = 1;
for (int i = 0; i < DIM; ++i) {
totalSize *= size[i];
}
// 初始化数据
memset(data, 0, sizeof(data));
}
// 设置指定位置的值
void set(const int coords[], long long value) {
int index = toIndex(coords);
data[index] = value;
}
// 获取指定位置的值
long long get(const int coords[]) const {
int index = toIndex(coords);
return data[index];
}
// 计算高维前缀和(正向:包含当前点的低维前缀和)
void computePrefixSum() {
int coords[DIM];
// 按每个维度进行前缀和计算
for (int d = 0; d < DIM; ++d) {
for (int i = 0; i < totalSize; ++i) {
toCoords(i, coords);
if (coords[d] > 0) {
coords[d]--;
int prevIndex = toIndex(coords);
coords[d]++; // 恢复
data[i] += data[prevIndex];
}
}
}
}
// 计算高维后缀和(反向:包含当前点的高维后缀和)
void computeSuffixSum() {
int coords[DIM];
// 按每个维度进行后缀和计算
for (int d = 0; d < DIM; ++d) {
for (int i = 0; i < totalSize; ++i) {
toCoords(i, coords);
if (coords[d] < size[d] - 1) {
coords[d]++;
int nextIndex = toIndex(coords);
coords[d]--; // 恢复
data[i] += data[nextIndex];
}
}
}
}
// 使用位运算优化的子集和计算(适用于维度不高的情况)
// 假设每个维度大小为2,适用于状态压缩问题
void computeSubsetSum() {
for (int d = 0; d < DIM; ++d) {
for (int i = 0; i < totalSize; ++i) {
if (i & (1 << d)) { // 如果第d位为1
data[i] += data[i ^ (1 << d)]; // 加上该位为0时的值
}
}
}
}
// 获取总元素数量
int getTotalSize() const {
return totalSize;
}
// 获取指定维度的大小
int getDimSize(int d) const {
return size[d];
}
};
代码解析
上面的代码实现了一个通用的高维前缀和模板类,主要特点包括:
- 模板参数支持任意维度 (DIM) 和最大元素数量 (MAXN)
- 提供了坐标与索引的相互转换
- 实现了三种核心计算方法:
computePrefixSum(): 计算正向高维前缀和computeSuffixSum(): 计算反向高维后缀和computeSubsetSum(): 利用位运算优化的子集和计算
特别地,computeSubsetSum()方法利用了位运算的特性,适用于每个维度大小为 2 的情况(如状态压缩问题)。它通过判断二进制位来决定是否累加对应子状态的值,时间复杂度为 O (DIM × 2^DIM),远优于朴素算法。
应用场景
高维前缀和与位运算结合的技术在以下领域有重要应用:
- 状态压缩动态规划:如子集计数、状态转移等
- 容斥原理:高效计算多个条件的组合数
- 多维范围查询:快速回答高维空间中的区域和问题
- 集合论问题:计算子集、超集相关的统计量
通过位运算优化的高维前缀和技术,能够将原本复杂的高维问题转化为高效的计算过程,是算法竞赛和高性能计算中的重要工具。
4268

被折叠的 条评论
为什么被折叠?



