高维前缀和与位运算

什么是高维前缀和

前缀和是算法中常用的一种优化技术,能够将多次区间查询的时间复杂度从 O (n) 降低到 O (1)。高维前缀和则是将这一思想扩展到二维、三维甚至更高维度的情况。

在多维空间中,前缀和表示从原点到该点所构成的超矩形区域内所有元素的和。高维前缀和在动态规划、计数问题、状态压缩等场景中有着广泛应用。

从一维到高维的扩展

  • 一维前缀和:sum[i] = a[1] + a[2] + ... + a[i]
  • 二维前缀和:sum[i][j] = 所有a[x][y]的和,其中x ≤ i, y ≤ j
  • 三维前缀和:sum[i][j][k] = 所有a[x][y][z]的和,其中x ≤ i, y ≤ j, z ≤ k

高维前缀和的朴素计算方法时间复杂度较高,而位运算可以帮助我们高效地实现高维前缀和。

位运算在高维前缀和中的应用

位运算特别适合处理高维前缀和,因为:

  1. 二进制表示可以自然地对应多维空间的坐标
  2. 位操作可以高效地枚举子集和超集
  3. 位移操作可以方便地在不同维度间切换

高维前缀和的快速计算通常使用 "容斥原理" 和 "按位枚举" 相结合的方法,称为 "子集前缀和" 或 "超集前缀和"。

高维前缀和的实现

下面是使用位运算优化的高维前缀和模板代码:

#include <vector>
#include <cstring>
#include <algorithm>

// 高维前缀和模板类
template<int DIM, int MAXN>
class HighDimPrefixSum {
private:
    int size[DIM];          // 各维度的大小
    int totalSize;          // 总元素数量
    int mul[DIM];           // 计算索引的乘数
    long long data[MAXN];   // 存储数据
    
    // 将多维坐标转换为一维索引
    int toIndex(const int coords[]) const {
        int index = 0;
        for (int i = 0; i < DIM; ++i) {
            index += coords[i] * mul[i];
        }
        return index;
    }
    
    // 将一维索引转换为多维坐标
    void toCoords(int index, int coords[]) const {
        for (int i = 0; i < DIM; ++i) {
            coords[i] = index / mul[i];
            index %= mul[i];
        }
    }
    
public:
    // 构造函数
    HighDimPrefixSum(const int s[]) {
        memcpy(size, s, sizeof(size));
        
        // 计算乘数
        mul[DIM-1] = 1;
        for (int i = DIM-2; i >= 0; --i) {
            mul[i] = mul[i+1] * size[i+1];
        }
        
        // 计算总大小
        totalSize = 1;
        for (int i = 0; i < DIM; ++i) {
            totalSize *= size[i];
        }
        
        // 初始化数据
        memset(data, 0, sizeof(data));
    }
    
    // 设置指定位置的值
    void set(const int coords[], long long value) {
        int index = toIndex(coords);
        data[index] = value;
    }
    
    // 获取指定位置的值
    long long get(const int coords[]) const {
        int index = toIndex(coords);
        return data[index];
    }
    
    // 计算高维前缀和(正向:包含当前点的低维前缀和)
    void computePrefixSum() {
        int coords[DIM];
        
        // 按每个维度进行前缀和计算
        for (int d = 0; d < DIM; ++d) {
            for (int i = 0; i < totalSize; ++i) {
                toCoords(i, coords);
                if (coords[d] > 0) {
                    coords[d]--;
                    int prevIndex = toIndex(coords);
                    coords[d]++;  // 恢复
                    data[i] += data[prevIndex];
                }
            }
        }
    }
    
    // 计算高维后缀和(反向:包含当前点的高维后缀和)
    void computeSuffixSum() {
        int coords[DIM];
        
        // 按每个维度进行后缀和计算
        for (int d = 0; d < DIM; ++d) {
            for (int i = 0; i < totalSize; ++i) {
                toCoords(i, coords);
                if (coords[d] < size[d] - 1) {
                    coords[d]++;
                    int nextIndex = toIndex(coords);
                    coords[d]--;  // 恢复
                    data[i] += data[nextIndex];
                }
            }
        }
    }
    
    // 使用位运算优化的子集和计算(适用于维度不高的情况)
    // 假设每个维度大小为2,适用于状态压缩问题
    void computeSubsetSum() {
        for (int d = 0; d < DIM; ++d) {
            for (int i = 0; i < totalSize; ++i) {
                if (i & (1 << d)) {  // 如果第d位为1
                    data[i] += data[i ^ (1 << d)];  // 加上该位为0时的值
                }
            }
        }
    }
    
    // 获取总元素数量
    int getTotalSize() const {
        return totalSize;
    }
    
    // 获取指定维度的大小
    int getDimSize(int d) const {
        return size[d];
    }
};

代码解析

上面的代码实现了一个通用的高维前缀和模板类,主要特点包括:

  1. 模板参数支持任意维度 (DIM) 和最大元素数量 (MAXN)
  2. 提供了坐标与索引的相互转换
  3. 实现了三种核心计算方法:
    • computePrefixSum(): 计算正向高维前缀和
    • computeSuffixSum(): 计算反向高维后缀和
    • computeSubsetSum(): 利用位运算优化的子集和计算

特别地,computeSubsetSum()方法利用了位运算的特性,适用于每个维度大小为 2 的情况(如状态压缩问题)。它通过判断二进制位来决定是否累加对应子状态的值,时间复杂度为 O (DIM × 2^DIM),远优于朴素算法。

应用场景

高维前缀和与位运算结合的技术在以下领域有重要应用:

  1. 状态压缩动态规划:如子集计数、状态转移等
  2. 容斥原理:高效计算多个条件的组合数
  3. 多维范围查询:快速回答高维空间中的区域和问题
  4. 集合论问题:计算子集、超集相关的统计量

通过位运算优化的高维前缀和技术,能够将原本复杂的高维问题转化为高效的计算过程,是算法竞赛和高性能计算中的重要工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值