线性代数对角矩阵对角化

线性代数 专栏收录该内容
1 篇文章 0 订阅
  1. 为什么实对称矩阵的相似对角化要用正交矩阵?
    一般矩阵的相似对角化用它的特征向量组成的矩阵就可以了,为什么实对称矩阵的相似对角化这么特殊呢,名称叫做正交矩阵化,求得特征向量矩阵后还要正交化和单位化使之成为正交矩阵呢?
    答:
    对称矩阵也可以用一般的由特征向量组成的非奇异阵做对角化,只不过它有特殊的性质(对称),因此我们就可以考虑特殊的对角化,也就是正交相似对角化。这么做有好处:正交矩阵的逆矩阵很容易求,就是它的转置,不像一般的可逆阵需要半天才能求出来。你想想,如果是一个1000*1000的矩阵求逆,那要多长时间才能做完?但正交矩阵就太容易了,只要转置一下就行了。

  2. 一般矩阵,非实对称矩阵,如果它满足相似对角化的条件 那它可不可以正交对角化?
    答:能。
    因为只有对称矩阵才有这样一个性质:对于不同特征值对应的特征向量,它们互相正交
    因此,对于重特征值,则可以通过正交化来获得对应的相互正交的特征向量。再与其他特征值的特征向量一起,构成了n个相互正交的特征向量。
    而对于非对称矩阵,虽然对于重特征值时,你可以用同样的正交化方法获得相互正交的同特征值对应特征向量,但是不同特征值对应的特征向量不是正交的,而不同的特征值对应的特征向量用正交化方法是没有意义的(你能算出来,但结果不再是特征向量了,因为不同特征值的特征向量相互线性运算后不再是特征向量),所以没有办法获得N个相互正交的特征向量的。
    也许你会问如果是N个相同特征值的非对称矩阵是不是就能够用正交化方法获得N个相互正交的特征向量了,但是对于这种情况,你的矩阵必须是对称的,否则不满足相似对角化条件,即找不到n个线性无关特征向量。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值