欧几里得算法

欧几里得算法原理

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。 
gcd(a,b)=gcd(b,a mod b);

几里得算法证明过程

a可以表示成a = kb + r,则r = a mod b 
假设d是a,b的一个公约数,则有 
d|a, d|b,而r = a - kb,因此d|r 

因此d是(b,a mod b)的公约数

欧几里得算法核心代码

public static long gcd(long m,long n){
    while(n != 0){
        long rem = m%n;
        m = n;
        n = rem;
    }
    return m;
}欧几里得算法简写形式:int gcd(int a,int b){return b?gcd(b,a%b):a;}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值