利用Vectara实现高效的RAG模型构建与应用

老铁们,今天咱们聊一个相当实用的工具——Vectara。它可以帮助大家构建一个类似于ChatGPT的AI助手,但是牛掰的地方在于,它还能结合你自己的数据、文档和知识库。这就是传说中的“检索增强生成(RAG)作为服务” 。

技术背景介绍

说白了,Vectara就是一个无服务器的RAG服务,所有复杂的处理都封装在了一个简单易用的API中。比如,你丢给它一个PDF或者Word文档,它可以自动抽取文本、进行高效的ML分片、嵌入到内部的向量数据库中,然后你就可以根据这些数据进行智能检索和生成了。

原理深度解析

Vectara的强大之处在于它的检索和生成管道。这个管道包括:

  • 文本抽取:从各种格式的文件中提取内容,包括PDF、PPT和DOCX等等。
  • ML分片:利用机器学习模型进行文本分割,保证最优性能。
  • Boomerang嵌入模型:将文本转换为嵌入向量,存储在内部的向量数据库中。
  • 查询服务:将你的查询自动编码成嵌入向量,并检索最相关的文本片段,支持混合搜索和最大边际相关性(MMR)。
  • 生成总结:基于检索到的文档内容,生成详细的总结。

实战代码演示

接下来咱们看看实际应用。假设我们要利用Vectara来处理一个State of the Union演讲的文本:

import os
from langchain_community.vectorstores import Vectara
from langchain_community.vectorstores.vectara import (
    RerankConfig,
    SummaryConfig,
    VectaraQueryConfig,
)

os.environ["VECTARA_API_KEY"] = "<YOUR_VECTARA_API_KEY>"
os.environ["VECTARA_CORPUS_ID"] = "<YOUR_VECTARA_CORPUS_ID>"
os.environ["VECTARA_CUSTOMER_ID"] = "<YOUR_VECTARA_CUSTOMER_ID>"

vectara = Vectara.from_files(["state_of_the_union.txt"])

summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang="eng")
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(
    k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config
)

query_str = "what did Biden say?"

rag = vectara.as_rag(config)
response = rag.invoke(query_str)
print(response["answer"])

这波操作可以说是相当丝滑!我们只需要设置几个配置,就能够通过简单的查询获取到相关内容的深层次总结。

优化建议分享

在提高稳定性方面,我建议大家使用代理服务来增强网络连接的可靠性。此外,Vectara还提供了“事实一致性评分”,可以帮助你评估生成的答案是否符合原文内容,确保结果的准确性。

补充说明和总结

我个人一直在用 Vectara 提供的服务,它真的让大规模模型的管理变得轻而易举。如果你想构建一个基于文档的智能问答系统,这个平台绝对值得一试!

今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值