ClickHouse集群搭建从0到1
ClickHouse安装的2种方法,以及背后的坑 一步步帮你实现ClickHouse从单机到集群化,以及集群化的原理、配置文件等 集群化的2种方案,孰优孰劣 如有疑问,请留言或者联系我 组件介绍 ClickHouse安装完后,会有几个重要命令: a. clickhouse-server ClickHouse的Server端,也就是CK数据库的核心程序,相当于 mysqld命令,提供数据库服务端 b. clickhouse-client ClickHouse自带的client端,提供命令行的交互操作方式,来连接服务 端,相当于mysql命令 Docker安装 官方默认只支持Ubuntu,并且提供了Docker镜像: ClickHouse Server ClickHouse Client Docker安装很方便,但是有几个问题: 默认监听了IPv6,如果你的服务器恰好没有开启V6,会导致Docker启动失败的 解决方案:使用Docker命令,cp出默认的配置文件,修改network监 听后,拷回Docker,重新启动即可 默认时区问题并不是东八区,如果没有修改,一些时间函数会差8个小时 clickhouse-client在Docker下,无法正常输入中文(调了LANG,无效,如果搞定记得 告诉我) 数据目录如果有要求,额外在Docker启动的时候,挂载一下 配置文件不方便修改 建议调整: 挂载本地服务器时区,或者直接修改Docker里的时区文件 拷贝所有配置文件到服务器目录,启动时做映射,方便修改 映射一个专用的数据目录 由于Docker方式我并不在线上采用,这里不再举例。建议仅仅作为笔记本上测试、了解用(不过前期,没有 找到rpm包,Docker的确帮了我们很大的忙)。 RPM包安装 不出意外的话,99%的服务器都是CentOS系列 官方没有提供rpm包,但是Altinity公司提供了,关于这个公司的介绍,可以参照我其他文章 如果下载不了,看我的百度网盘,密码yv72(我这里好久没更新了,请注意看版本) CentOS推荐7.3以上,基本没有依赖包的问题 rpm -ivh * 即可安装完成 配置文件解析 ClickHouse有几核心的配置文件: a. config.xml 端口配置、本地机器名配置、内存设置等 b. metrika.xml 集群配置、ZK配置、分片配置等 c. users.xml 权限、配额设置 以上文件都可以在官方git下载到 rpm启动方式 rpm安装后,会在服务器上生成如下几个文件:
默认配置文件位置
root@localhost.localdomain:/ # ls /etc/clickhouse-server config.xml users.xml
上述文件定义了默认数据目录,临时目录位置,日志目录
/var/lib/clickhouse /var/lib/clickhouse/tmp/ /var/log/clickhouse-server
默认启动脚本,注意,这个名字虽然叫server,其实是个shell脚本
/etc/rc.d/init.d/clickhouse-server root@localhost.localdomain:/ # file /etc/rc.d/init.d/clickhouse-server /etc/rc.d/init.d/clickhouse-server: POSIX shell script, ASCII text executable, with very long lines
最大文件打开数
root@localhost.localdomain:/ # cat /etc/security/limits.d/clickhouse.conf clickhouse soft nofile 262144 clickhouse hard nofile 262144
默认crontab目录(没啥用)
/etc/cron.d/clickhouse-server
剩下就是/usr/bin下的二进制文件,但其实都是软链接到了clickhouse这个二进制文件
root@localhost.localdomain:/usr/bin # ll | grep click -i -rwxr-xr-x 1 root root 63M Sep 20 16:58 clickhouse lrwxrwxrwx 1 root root 10 Dec 11 17:14 clickhouse-client -> clickhouse -rwxr-xr-x 1 root root 3.3M Sep 20 16:58 clickhouse-compressor lrwxrwxrwx 1 root root 10 Dec 11 17:14 clickhouse-server -> clickhouse 知道上述几个文件的作用后,我们就知道该怎么做了 默认的数据目录明显不合理,特别是对于部分机器,系统盘和数据盘是不同的配置,需 要单独挂载,以我们为例,我们统一使用/data1来放数据,数据目录以clickhouse命名,考 虑到不用单机多实例,不以clickhouse${port}来命名 默认的配置文件,对我们的管理也是个隐患,建议把配置文件、数据目录、临时目录、 日志文件,统一放到/data1/clickhouse里,即: root@localhost.localdomain:/data1/clickhouse # tree . -L 1 . ├── config-preprocessed.xml ├── config.xml ├── cores ├── data ├── flags ├── log ├── metadata ├── metrika.xml ├── start_ck.sh ├── status ├── tmp ├── users-preprocessed.xml └── users.xml 关于如何启动,我们的做法是: 修改默认的shell脚本,修改默认配置文件的位置,即上面的start_ck.sh [图片上传中… (Snip20171212_37.png-4c0f8a-1513094816911-0)]
这里其实是可以直接使用clickhouse-server(二进制那个),并采用-d参数启动的,但是实际过程,遇到了很多意外 的情况,比如-d后,并不会以daemon方式启动,后来就不考虑直接命令行方式了 修改config.xml里对数据目录的定义 <?xml version="1.0"?>
trace /data1/clickhouse/log/server.log /data1/clickhouse/log/error.log 1000M 10
8123 9000 9009
这里需要用域名,如果后续用到复制的话
0.0.0.0
64
3
16
8589934592 10737418240
/data1/clickhouse/
/data1/clickhouse/tmp/
users.xml default 1 default
3600
0 /data1/clickhouse/metrika.xml 单机 无需多解释,就是单机部署 按照上述方式安装rpm包,修改默认的config文件和启停控制脚本,启动即可 我上面的配置文件里,直接包含了集群的配置文件,如果只用了上述文件,是无法正常启动的 看这个文章的,应该都是冲着后面的集群搭建来的吧,所以,忽略这一个吧 分布式集群 CK是如何实现分布式的 CK的分布式,完全依赖配置文件,即每个节点,都共享同样的配置文件,这个配置文件里,写了我跟谁是一 个cluster的,我自己的名字是啥 如下面的配置文件里,有3个分片,各自用域名来标记,如果需要密码的话,集群也要写上明文密码和用户名 这样,就行程了ClickHouse的集群 集群怎么用? 答案是指定引擎 CK里的引擎有十几个,这里只推荐3个: i. MergeTree,是CK里最Advanced的引擎,性能超高,单机写入可以达 到50w峰值,查询性能非常快,有兴趣看我其他文章 ii. ReplicatedMergeTree,基于MergeTree,同时引入ZK,做了复制, 下文会说 iii. Distributed,分布式引擎,本身不存储数据,可认为就是一张View, 如果写入,会把请求丢到集群里的节点(有算法控制),如果查询,会帮 你做查询转发再聚合返回 metrika.xml
false ck31.xxxx.com.cn 9000 default 6lYaUiFi
false ck32.xxxx.sina.com.cn 9000 default 6lYaUiFi
false ck33.xxxxa.com.cn 9000 default 6lYaUiFi
ck1
::/0
1.xxxx.sina.com.cn 2181 2.xxxx.sina.com.cn 2181 3.xxxxp.sina.com.cn 2181
10000000000 0.01 lz4 user.xml 关于用户名密码的问题,在另一篇文章有解释,这里只贴上配置文件 <?xml version="1.0"?>
10000000000 0 random
10000000000 0 random 1
3600 0 0 0 0 0
967f3bf355dddfabfca1c9f5cab39352b2ec1cd0b05f9e1e6b8f629705fe7d6e ::/0 default default
967f3bf355dddfabfca1c9f5cab39352b2ec1cd0b05f9e1e6b8f629705fe7d6e ::/0 readonly default 简单分布式方案 MergeTree + Distributed CREATE TABLE db.tb (date Date, ……) ENGINE = MergeTree(date, (date, hour, datetime), 8192) CREATE TABLE db.tb_all (date Date, ……) ENGINE = Distributed(bip_ck_cluster, 'ck_test', 'dagger', rand())" db.tb为本地表,数据只是在本地 db.tb_all为分布式表,查询这个表,引擎自动把整个集群数据计算后返回 像不像一台手动挡的车 分布式+高可用方案1 上述方案,使用过后,会发现CK的性能真的是超级快,这里我就不在贴图了,有兴趣可以看我那122页的PPT 但是有个问题,以上面3个节点为例,每个节点占1/3,如果宕机1个节点,直接丢掉1/3的数据,不能忍啊 于是,就得考虑数据的安全性,即副本 MergeTree + Distributed + 集群复制 配置如下: 解释都在图里了,提一点,如果IP1挂了,IP2还在,不影响集群查询 这种方案为什么我们没有用呢? 如果IP1临时宕机,从宕机开始到恢复,期间的增量数据是可以补全的,依赖的IP2上的 推送机制,会有临时目录 但是,如果IP1彻底玩完,硬盘坏了,无法恢复,只能重做,引入一个IP5来替换IP1,这 时候问题就来了,存量数据无法恢复 这个方案之前有过争议,我坚持上面的观点,由于时间有限,没有详细测试,从CK原理 上来讲,的确存在上述的问题,所以我们不用 分布式+高可用方案2 ReplicatedMergeTree + Distributed 仅仅是把MergeTree引擎替换为ReplicatedMergeTree引擎 ReplicatedMergeTree里,共享同一个ZK路径的表,会相互,注意是,相互同步数据 CREATE TABLE db.tb (date Date, ……) ENGINE = ReplicatedMergeTree('/clickhouse/db/tb/name', 'node_name', date, (date, hour, datetime), 8192) CREATE TABLE db.tb_all (date Date, ……) ENGINE = Distributed(bip_ck_cluster, 'ck_test', 'dagger', rand())" 示意图架构就是这样: 每个IDC有3个分片,各自占1/3数据 每个节点,依赖ZK,各自有2个副本 这样,就不怕宕机啦~ CK分布式的问题 写哪个表 可以写xxx_all,也可以写xxx本地表 前者由于分布式表的逻辑简单,仅仅是转发请求,所以在转发安全性上,会有风险,并 且rand的方式,可能会造成不均衡 我们建议,通过DNS轮训,写本地表,这样最保险和均衡 读哪个表 毫无疑问,是xxx_all表 3个节点,要么都用,要么都不用,不能只用2个或者1个 集群配置里,我们用了域名,本想着方便切换,但是CK只有在启动的时候,才会做解析 那故障了怎么切换? CK有一个厉害的地方,节点变动,无需重启,会自动加载 利用上述特性,我们先去掉一个节点的配置,再加上这个节点的配置(DNS变更后), 即可不重启就完成fail over 总结 ClickHouse的性能令人印象深刻,但是,整个操作,又非常像一台手动挡的车,如果不是老司机,用着用着 可能数据都没了,所以,掌握好原理,是开好这辆“超跑”的关键 上述集群中,你是否觉得表管理非常麻烦呢?的确,又要区分集群,又要区分副本,建议写一个脚本来统一建 表,我们就是这么搞的