基于Darknet的YOLOv4目标检测

目录

一、Windows环境下的YOLOv4目标检测

1、环境配置

2、克隆或下载YOLOv4

3、Visual Studio2019配置YOLOv4项目

4、Visual Studio2019编译YOLOv4项目

5、YOLOv4权重文件下载

6、YOLOv4目标检测测试

7、使用YOLOv4训练自己的数据集

8、Anchor Box先验框聚类分析与修改

二、Linux环境下的YOLOv4目标检测

1、环境配置

2、YOLOv4下载和编译

3、测试图片

三、提高YOLOv4目标检测性能的技巧

1、YOLOv4训练前的改善技巧

2、YOLOv4训练后的改善技巧


一、Windows环境下的YOLOv4目标检测

1、环境配置

环境准备:Win10、CUDA10.1、cuDNN7.65、Visual Studio 2019、OpenCV 3.4

(1)Visual Studio2019企业版安装

(2)NVIDIA驱动下载与安装

(3)下载并安装CUDA10.1,下载安装cuDNN7.65

对于cudnn直接将其解开压缩包,然后需要将bin,include,lib中的文件复制粘贴到cuda的文件夹下,比如:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1

(4)CUDA安装测试

(5)OpenCV安装

下载OpenCV3.4;运行exe(其实是解压),将压缩包解压到相应目录,如: C:\Program Files (x86)\opencv;在系统变量 Path 的末尾添加:C:\Program Files (x86)\opencv\build\x64\vc15\bin

2、克隆或下载YOLOv4

3、Visual Studio2019配置YOLOv4项目

(1)复制opencv文件

在文件夹C:\Program Files (x86)\opencv\build\x64\vc15\bin的两个dll文件:opencv_ffffmpeg340_64.dll和opencv_world340.dll复制到D:\darknet\build\darknet\x64

(2)Visual Studio 2019项目配置

用visual studio2019打开darknet.sln文件

然后需要重启电脑。

打开darknet.sln项目,对其进行配置:项目 ->属性;注意应选releasex64

(3)接下来几个步骤比较关键

  • 注意检查Windows SDK版本

  • 修改包含目录和库目录

添加opencv3.4的包含目录和库目录(按照自己的opencv3.4的路径)包含目录:

C:\Program Files (x86)\opencv\build\include

C:\Program Files (x86)\opencv\build\include\opencv

C:\Program Files (x86)\opencv\build\include\opencv2

  • 库目录:C:\Program Files (x86)\opencv\build\x64\xc14\lib  

  • 附加依赖项

添加附加依赖项(按照自己的opencv3.4的路径):C:\Program Files (x86)\opencv\build\x64\vc14\lib\opencv_world340.lib

4、Visual Studio2019编译YOLOv4项目

点击“重新生成解决方案”。可能有下述错误:严重性 代码 说明 项目 文件 行 禁止显示状态 错误 MSB4019 找不到导入的项目“C:\Program Files(x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\CUDA 10.0.props”。请确认 Import 声明“C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\CUDA 10.0.props”中的表达式正确,且文件位于磁盘上。 darknet D:\darknet\build\darknet\darknet.vcxproj

解决方法:将D:\darknet\build\darknet\darknet.vcxproj中版本号进行修改如下

 仍然有错误时的解决方法:

  • 将NVIDIA CUDA的安装程序(.exe文件)数据解压到一个指定文件夹中(最好是放在一个文件夹,解压后会出现很多文件,这样方便查找)

  • "D:\Temp\CUDA\VisualStudioIntegration\extras\visual_studio_integration\MSBuildExtensions"下的文件直接拷贝到“C:\Program Files (x86)\Microsoft VisualStudio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations”文件夹中。
  • 再次点击重新生决方案,这时成解应该编译成功,并产生可执行文件D:\darknet\build\darknet\x64\darknet.exe

5、YOLOv4权重文件下载

yolov4.weight下载,拷贝权重文件到D:\darknet\build\darknet\x64

6、YOLOv4目标检测测试

(1)测试图片

在D:\darknet\build\darknet\x64\ 目录下执行:

darknet.exe detector test cfg\coco.data cfg\yolov4.cfg yolov4.weights data\dog.jpg

结果如下:

(2)测试视频

在D:\darknet\build\darknet\x64\ 目录下执行:

darknet.exe detector demo cfg\coco.data cfg\yolov4.cfg yolov4.weights data\driving.mp4

7、使用YOLOv4训练自己的数据集

(1)数据集准备

使用PASCAL VOC数据集的目录结构(建立文件夹层次为 D:\darknet\build\darknet\x64\VOCdevkit\ VOC2007):

JPEGImages放所有的训练和测试图片;Annotations放所有的xml标记文件

(2)训练集和测试集生成

在D:\darknet\build\darknet\x64\目录下执行:python genfiles.py

在VOCdevkit \ VOC2007目录下可以看到生成了文件夹labels ,同时在darknet下生成了两个文件2007_train.txt和2007_test.txt。2007_train.txt和2007_test.txt分别给出了训练图片文件和测试图片文件的列表,含有每个图片的路径和文件名。

另外,在VOCdevkit \ VOC2007\ImageSets\Main目录下生产了两个文件test.txt和train.txt,分别给出了训练图片文件和测试图片文件的列表,但只含有每个图片的文件名(不含路径和扩展名)。labels下的文件是images文件夹下每一个图像的yolo格式的标注文件,这是由annotations的xml标注文件转换来的。

最终训练只需要:2007_train.txt,2007_test.txt,labels下的标注文件和 VOCdevkit\VOC2007\JPEGImages下的图像文件。

生成YOLO格式的txt标记文件内容如下:

genfiles.py文件如下:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import random

classes=["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]

def clear_hidden_files(path):
    dir_list = os.listdir(path)
    for i in dir_list:
        abspath = os.path.join(os.path.abspath(path), i)
        if os.path.isfile(abspath):
            if i.startswith("._"):
                os.remove(abspath)
        else:
            clear_hidden_files(abspath)

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_id):
    in_file = open('VOCdevkit\VOC2007\Annotations\%s.xml' %image_id)
    out_file = open('VOCdevkit\VOC2007\labels\%s.txt' %image_id, 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()

wd = os.getcwd()
wd = os.getcwd()
work_sapce_dir = os.path.join(wd, "VOCdevkit\\")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
work_sapce_dir = os.path.join(work_sapce_dir, "VOC2007\\")
if not os.path.isdir(work_sapce_dir):
    os.mkdir(work_sapce_dir)
annotation_dir = os.path.join(work_sapce_dir, "Annotations\\")
if not os.path.isdir(annotation_dir):
        os.mkdir(annotation_dir)
clear_hidden_files(annotation_dir)
image_dir = os.path.join(work_sapce_dir, "JPEGImages\\")
if not os.path.isdir(image_dir):
        os.mkdir(image_dir)
clear_hidden_files(image_dir)
VOC_file_dir = os.path.join(work_sapce_dir, "ImageSets\\")
if not os.path.isdir(VOC_file_dir):
        os.mkdir(VOC_file_dir)
VOC_file_dir = os.path.join(VOC_file_dir, "Main\\")
if not os.path.isdir(VOC_file_dir):
        os.mkdir(VOC_file_dir)

train_file = open(os.path.join(wd, "2007_train.txt"), 'w')
test_file = open(os.path.join(wd, "2007_test.txt"), 'w')
train_file.close()
test_file.close()
VOC_train_file = open(os.path.join(work_sapce_dir, "ImageSets\\Main\\train.txt"), 'w')
VOC_test_file = open(os.path.join(work_sapce_dir, "ImageSets\\Main\\test.txt"), 'w')
VOC_train_file.close()
VOC_test_file.close()
if not os.path.exists('VOCdevkit\\VOC2007\\labels'):
    os.makedirs('VOCdevkit\\VOC2007\\labels')
train_file = open(os.path.join(wd, "2007_train.txt"), 'a')
test_file = open(os.path.join(wd, "2007_test.txt"), 'a')
VOC_train_file = open(os.path.join(work_sapce_dir, "ImageSets\\Main\\train.txt"), 'a')
VOC_test_file = open(os.path.join(work_sapce_dir, "ImageSets\\Main\\test.txt"), 'a')
list = os.listdir(image_dir) # list image files
probo = random.randint(1, 100)
print("Probobility: %d" % probo)
for i in range(0,len(list)):
    path = os.path.join(image_dir,list[i])
    if os.path.isfile(path):
        image_path = image_dir + list[i]
        voc_path = list[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
    probo = random.randint(1, 100)
    print("Probobility: %d" % probo)
    if(probo < 75):
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            VOC_train_file.write(voc_nameWithoutExtention + '\n')
            convert_annotation(nameWithoutExtention)
    else:
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            VOC_test_file.write(voc_nameWithoutExtention + '\n')
            convert_annotation(nameWithoutExtention)
train_file.close()
test_file.close()
VOC_train_file.close()
VOC_test_file.close()

(3)修改配置文件

  • 新建data\voc.names文件,该文件内容存放数据标签名,可以复制data\voc.names再根据自己情况的修改(修改成自己的分类);可以重新命名等。

  •  新建 data\voc.data文件,可以复制data\voc.data再根据自己情况的修改;可以重新命等。

classes = N ,N为自己的分类数量;train 训练集完整路径列表;valid 测试集完整路径列表;names = data/voc.names  类别文件;backup = backup/ 训练结果保存在darknet/backup/目录下。

  • 新建cfg\yolov4-voc.cfg,可以复制cfg\yolov4-custom.cfg再根据自己情况的修改;可以重新命名等。

yolov4-voc.cfg文件参数说明:

  • batch: 每一次迭代送到网络的图片数量,也叫批数量。增大这个可以让网络在较少的迭代次数内完成一个epoch。在固定最大迭代次数的前提下,增加batch会延长训练时间,但会更好的寻找到梯度下降的方向。如果你显存够大,可以适当增大这个值来提高内存利用率。这个值是需要大家不断尝试选取的,过小的话会让训练不够收敛,过大会陷入局部最优。
  • subdivision:这个参数它会让你的每一个batch不是一下子都丢到网络里。而是分成subdivision对应数字的份数,一份一份的跑完后,在一起打包算作完成一次iteration。这样会降低对显存的占用情况。如果设置这个参数为1的话就是一次性把所有batch的图片都丢到网络里,如果为2的话就是一次丢一半。(subdivisions=8 ,如果显存溢出改为16,32或64
  • angle:图片旋转角度,这个用来增强训练效果的。从本质上来说,就是通过旋转图片来变相的增加训练样本集。
  • saturation,exposure,hue:饱和度,曝光度,色调,这些都是为了增强训练效果用的。
  • learning_rate:学习率,训练发散的话可以降低学习率。学习遇到瓶颈,loss不变的话也减低学习率。
  • max_batches: 最大迭代次数。
  • policy:学习策略,一般都是step这种步进式。
  • step,scales:这两个是组合一起的,举个例子:learn_rate: 0.001, step:100,25000,35000   scales: 10, .1, .1 这组数据的意思就是在0-100次iteration期间learning rate为原始0.001,在100-25000次iteration期间learning rate为原始的10倍0.01,在25000-35000次iteration期间learning rate为当前值的0.1倍,就是0.001, 在35000到最大iteration期间使用learning rate为当前值的0.1倍,就是0.0001。随着iteration增加,降低学习率可以是模型更有效的学习,也就是更好的降低train loss。

在cfg\yolov4-voc.cfg文件中,三个yolo层和各自前面的convolutional层的参数需要修改:filters=num╳(classes+5),5的意义是4个坐标加一个置信率num表示YOLO中每个cell预测的框的个数,yolo层中的classes为类别,YOLOV3中为3。此 处 的 值 要 根 据 自 己 的 数 据 集 进 行 更 改 , 例 如 识 别 4 个 类 别 , 则 :filters=3 ╳(4+5)=27。

(4)使用YOLOv4进行训练

下载权重文件:yolov4.conv.137,放置在D:\darknet\build\darknet\x64目录下这里的训练使用迁移学习,所以下载的yolov4在coco数据集上的预训练权重文件(不含全连接层)

训练网络(如需要显示训练过程的map变化,在命令末尾加-map):

darknet.exe detector train data\voc.data cfg\yolov4.cfg yolov4.conv.137 -map 

网络训练建议:

  • batch=16
  • subdivisions=8 (如果显存溢出改为16,64)
  • 把max_batches设置为 (classes*2000);但最小为4000。例如如果训练3个目标类别,max_batches=6000
  • 把steps改为max_batches的80% and 90%;例如steps=4800, 5400。
  • 为增加网络分辨率可增大height和width的值,但必须是32的倍数 (height=608, width=608 or 32的整数倍) 。这有助于提高检测精度。

(5)mAP性能统计

统计 mAP@IoU=0.50:

darknet.exe detector map data\voc.data cfg\yolov4-test.cfg backup\yolov4.weights

统计 mAP@IoU=0.75:

darknet.exe detector map data\voc.data cfg\yolov4-test.cfg backup\yolov4.weights -iou_thresh 0.75

8、Anchor Box先验框聚类分析与修改

使用k-means聚类获得自己数据集的先验框大小:

darknet.exe detector calc_anchors data\voc.data -num_of_clusters 9 -width 608 -height 608

D:\darknet\build\darknet\x64目录下生成anchors.txt文件,修改cfg文件中的先验框大小,重新训练和测试

二、Linux环境下的YOLOv4目标检测

1、环境配置

环境准备:Ubuntu16.04、CUDA10.1、cuDNN 7.65、OpenCV 3.4

opencv安装可以基于源码,可以使用命令安装:apt-get install libopencv-dev

 

2、YOLOv4下载和编译

  • 下载darknet:git clone https://github.com/AlexeyAB/darknet.git
  • cd darknet
  • make #直接make则使用的是darknet原始配置(使用CPU)
  • 如果使用GPU和OpenCV,则将Makefile文件中的对应项改为1,然后再执行make命令 

  • 最后,在终端输入:./darknet
  • 出现以下输出则说明安装成功:usage: ./darknet <function>

3、测试图片

测试单张图片:

./darknet detect cfg/yolov4.cfg yolov4.weights data/dog.jpg

测试多张图片(根据提示输入图片路径): 

./darknet detect cfg/yolov4.cfg yolov4.weights

三、提高YOLOv4目标检测性能的技巧

1、YOLOv4训练前的改善技巧

  • 增大.cfg文件中的网络分辨率(height=608, width=608或任何32的倍数)有助于提高检测精度。
  • 检查要检测的每个目标在数据集中都标注了标签。数据集中的任何目标都要有标签,数据集中如果有错误的标签也会导致训练出问题。
  • 得到的损失函数很高并且mAP很低,训练出错了吗?在训练命令末尾使用-show_imgs 标志来运行训练,你是否能看到有正确的边界预测框的目标(在Windows的窗口或者aug_...jpg)?如果没有,训练是发生错误了。
  • 对于要检测的每个目标,训练集中必须至少有一个相似的目标,且它们具有大致相同的形状:形状、物体的侧面、相对大小、旋转角度、倾斜度、照明度。 理想的是训练集应包含目标的不同图像:比例、旋转、照明、不同侧面、不同背景。每类图片最好有2000张不同的图像,并且训练的迭代次数(iterations)设置为2000×classes以上(最少为4000)。
  • 训练数据集最好包含有不想检测的未标注物体的图像-即无边界框的负样本(空 的.txt文件)。并且负样本图像与带有物体的图像大致一样多。
  • 如果要对每个图像中的大量目标进行训练,请在cfg文件的最后一个[yolo]层中添加参数max = 200或更大的值 。
  • 为了使检测到的边界框更准确,可以向每个[yolo]层添加3个参数ignore_thresh = .9 iou_normalizer = 0.5 iou_loss = giou并进行训练,它将增加mAP@0.9,但降低mAP@0.5。
  • 从cfg文件重新计算数据集的宽度和高度锚框(聚类分析):darknet detector calc_anchors data / obj.data -num_of_clusters 9 -width 416 -height 416然后在cfg文件的3个[yolo]图层中的每个层中设置9个锚框。 但是,你应该为每个[yolo]层更改anchor masks =的索引。 同样,你应该在每个[yolo]层之前更改filters=(classes + 5)*<number of mask>。 如果许多计算出的锚不适合在适当的层下,则只需尝试使用所有默认锚框即可。

2、YOLOv4训练后的改善技巧

  • 通过在.cfg文件中设置(height=608 and width=608)或(height=832 and width=832)或(任何32的倍数)来提高网络分辨率。这可以提高精度并可以检测到小目标。
  • 不必再次训练网络,只需使用已经针对416x416分辨率进行训练的权重文件即可,但是要获得更高的准确性,应该使用更高分辨率的608x608或832x832进行训练,请注意:如果发生显存溢出错误,在.cfg 文件应该增加subdivisions=16, 32 or 64 (batch=64时)。

 

 

 

 

在无人驾驶中,交通标志识别是一项重要的任务。本项目以美国交通标志数据集LISA为训练对象,采用YOLOv3目标检测方法实现实时交通标志识别。 具体项目过程包括包括:安装Darknet、下载LISA交通标志数据集、数据集格式转换、修改配置文件、训练LISA数据集、测试训练出的网络模型、性能统计(mAP计算和画出PR曲线)和先验框聚类。 YOLOv3基于深度学习,可以实时地进行端到端的目标检测,以速度快见长。本课程将手把手地教大家使用YOLOv3实现交通标志的多目标检测。本课程的YOLOv3使用Darknet,在Ubuntu系统上做项目演示。 Darknet是使用C语言实现的轻型开源深度学习框架,依赖少,可移植性好,值得深入学习和探究。 除本课程《YOLOv3目标检测实战:交通标志识别》外,本人推出了有关YOLOv3目标检测的系列课程,请持续关注该系列的其它课程视频,包括: 《YOLOv3目标检测实战:训练自己的数据集》 《YOLOv3目标检测:原理与源码解析》 《YOLOv3目标检测:网络模型改进方法》 另一门课程《YOLOv3目标检测实战:训练自己的数据集》主要是介绍如何训练自己标注的数据集。而本课程的区别主要在于学习对已标注数据集的格式转换,即把LISA数据集从csv格式转换成YOLOv3所需要的PASCAL VOC格式和YOLO格式。本课程提供数据集格式转换的Python代码。 请大家关注以上课程,并选择学习。 下图是使用YOLOv3进行交通标志识别的测试结果
Linux创始人Linus Torvalds有一句名言:Talk is cheap, Show me the code.(冗谈不够,放码过来!)。 代码阅读是从入门到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。   YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长。 YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。   本课程将解析YOLOv3的实现原理和源码,具体内容包括:      YOLO目标检测原理       神经网络及Darknet的C语言实现,尤其是反向传播的梯度求解和误差计算       代码阅读工具及方法       深度学习计算的利器:BLAS和GEMM       GPU的CUDA编程方法及在Darknet的应用       YOLOv3的程序流程及各层的源码解析   本课程将提供注释后的Darknet的源码程序文件。   除本课程《YOLOv3目标检测:原理与源码解析》外,本人推出了有关YOLOv3目标检测的系列课程,包括:   《YOLOv3目标检测实战:训练自己的数据集》   《YOLOv3目标检测实战:交通标志识别》   《YOLOv3目标检测:原理与源码解析》   《YOLOv3目标检测:网络模型改进方法》   建议先学习课程《YOLOv3目标检测实战:训练自己的数据集》或课程《YOLOv3目标检测实战:交通标志识别》,对YOLOv3的使用方法了解以后再学习本课程。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页