模拟退火 [JSOI2004]平衡点 / 吊打XXX

 

本人水平有限,题解不到为处,请多多谅解

 

本蒟蒻谢谢大家观看

 

 

题目传送门

 

大致的模拟退火讲解我这里不再赘述,如有疑问请看这里

传送门连接

 

code:

#include <bits/stdc++.h>
#define down 0.996//徐徐降温 
using namespace std;
int n;
struct node{
int x;
int y;
int w;
}object[2005];//存下物体的坐标 
double ansx,ansy,answ;//最终答案 
double energy(double x,double y)//根据物理学知识,能量总和越小越稳定 
{
   double r=0,dx,dy;
   for (int a=1;a<=n;a++)
   {
      dx=x-object[a].x;
      dy=y-object[a].y;
      r+=sqrt(dx*dx+dy*dy)*object[a].w;
   }
      return r;
}
void sa()//模拟退火 
{
   double t=3000;//温度要足够高 
   while (t>1e-15)//略大于0 
   {
       //生成[-T*RAND_MAX,T*RAND_MAX)的随机变动范围(rand():[0,RAND_MAX))
       //rand()一个随机数,RAND_MAX随机范围内最大值
      double ex=ansx+(rand()*2-RAND_MAX)*t;//随机产生新的答案 
      double ey=ansy+(rand()*2-RAND_MAX)*t;
      double ew=energy(ex,ey);
      double de=ew-answ;
      if (de<0)//如果此答案更优,就接受 
      {
         ansx=ex;
         ansy=ey;
         answ=ew;
      }
      else if(exp(-de/t)*RAND_MAX>rand())
      //以概率exp(-Δt′/T)接受S′作为新的当前解S。
      //否则根据多项式概率接受 
      {
         ansx=ex;
         ansy=ey;
      }
      t*=down;
   }
}
void solve()//多跑几遍退火,增加得到最优解的概率 
{
   sa();
   sa();
   sa();
   sa();
}
int main() 
{
    cin>>n;
    for (int a=1;a<=n;a++)
    {
           scanf("%d%d%d",&object[a].x,&object[a].y,&object[a].w);
           ansx+=object[a].x;
           ansy+=object[a].y;
    }
        ansx/=n;//以平均数作为初始答案 
        ansy/=n;
        answ=energy(ansx,ansy);
        solve();
        printf("%.3lf %.3lf\n",ansx,ansy);//华丽的输出 
            return 0;
}

 

转载于:https://www.cnblogs.com/nlyzl/p/11568850.html

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值