题目大意:
老鼠有M磅猫食。有N个房间,每个房间前有一只猫,房间里有老鼠最喜欢的食品JavaBean,J[i]。若要引开猫,必须付出相应的猫食F[i]。当然这只老鼠没必要每次都付出所有的F[i]。若它付出F[i]的a%,则得到J[i]的a%。求老鼠能吃到的做多的JavaBean。
解题思路:
老鼠要获得最多的食品,就要用最小的猫食换取最多的猫食,这就要求J[i]/F[i]的比例要大。J[i]/F[i]的比例越大,证明在这个房间,小鼠付出得到的收获最有价值。于是我们将设置结构体,结构体里设置percent放置J[i]/F[i]。然后对结构体数组进行排序。依次按比例排序的付出猫食,即可。
例子:
输入
5 3
7 2
4 3
5 2
按J[i]/F[i]排序后:
7 2
5 2
4 3
在第一排数据上,小鼠付出2个猫食换得7个JavaBean。
在第二排数据上,小鼠付出2个猫食换得5个JavaBean。
在第三排数据上,小鼠只剩下1个猫食,便用这一个猫食换取1/3*4个JavaBean。
所以,总共换得13.333个JavaBan。
#include <stdio.h>
#include <algorithm>
using namespace std;
struct Trade {
int j, f;
double percent;
} mouse[3001];
bool cmp(Trade a, Trade b)
{
return a.percent > b.percent;
}
int main(void)
{
int n, m;
while(scanf("%d%d", &m, &n)!=EOF && (m!= -1 || n != -1))
{
int i;
for(i = 0; i < n; i++)// 输入数据
{
scanf("%d %d", &mouse[i].j, &mouse[i].f);
mouse[i].percent = (double)mouse[i].j / mouse[i].f;
}
sort(mouse, mouse + n, cmp);
double sum = 0; // 换得的javaBean之和
for(i = 0; i < n; i++)
{
if(m > mouse[i].f)// m是手中的猫食
{
sum += mouse[i].j;// 换得的javaBean之和
m -= mouse[i].f;// 减去所需要的猫食
}
else
{
sum += mouse[i].percent * m;
m = 0;
break;
}
}
printf("%.3lf\n", sum);
}
return 0;
}