[BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)

[BZOJ 1260][CQOI2007]涂色paint

Description

假设你有一条长度为5的木版,初始时没有涂过任何颜色。你希望把它的5个单位长度分别涂上红、绿、蓝、绿、红色,用一个长度为5的字符串表示这个目标:RGBGR。 每次你可以把一段连续的木版涂成一个给定的颜色,后涂的颜色覆盖先涂的颜色。例如第一次把木版涂成RRRRR,第二次涂成RGGGR,第三次涂成RGBGR,达到目标。 用尽量少的涂色次数达到目标。

Input
输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。

Output
仅一行,包含一个数,即最少的涂色次数。

Solution

1.首先我们先把数列收缩一下:因为一段连续的同色只需被刷一次,然后对应位置的表置为1;

2.考虑DP。

  • 当枚举的区间【L,R】左右端点颜色相同时,只需让第一次刷左或右端点时多刷一个格子即可,所以
if(list[l]==list[r])f[l][r]=min(f[l][r-1],f[l+1][r]);
  • 当枚举区间两侧颜色不同时,直接枚举断点松弛大的区间即可。

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;

string s;
bool use[27];
int num[27],list[110],f[110][110];

int main(){
    cin>>s;
    memset(f,0x3f,sizeof(f));
    for(int i=0;i<s.size();++i){
        while(s[i]==s[i+1])++i;
        if(use[s[i]-'A'+1])list[++list[0]]=num[s[i]-'A'+1];
        else{
            use[s[i]-'A'+1]=1;
            num[s[i]-'A'+1]=++num[0];
            list[++list[0]]=num[0];
        }
        f[list[0]][list[0]]=1;
    }
    for(int len=2;len<=list[0];++len)
        for(int l=1;l<=list[0]-len+1;++l){
            int r=l+len-1;
            if(list[l]==list[r])f[l][r]=min(f[l][r-1],f[l+1][r]);
            else for(int k=l;k<r;++k)
                    f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]);
        }
    printf("%d",f[1][list[0]]);
    return 0;
} 

有关区间DP的其他讲解参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/9038198.html

转载于:https://www.cnblogs.com/COLIN-LIGHTNING/p/9038352.html

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值