第十三届交通运输研究(上海)论坛┆“科技-产业-金融-政策”四元驱动的新质交通双碳体系 本推文介绍了上海师范大学李晔教授在第十三届交通运输研究(上海)论坛上的汇报内容:“科技-产业-金融-政策”四元驱动的新质交通双碳体系。
第十三届交通运输研究(上海)论坛┆新发展格局下高铁物流运输模式分析 本推文介绍了上海交通大学胡昊教授在第十三届交通运输研究(上海)论坛上的汇报内容:新发展格局下高铁物流运输模式分析。汇报详细介绍了高铁物流运输的发展背景、发展现状以及重要意义。同时也指出了当前高铁物流在装卸效率、运力限制和站台设施匹配度等方面,仍面临着诸多挑战。最后,胡教授还对高铁物流运输的布局选址和未来发展方向进行了分析。
智能体前沿论文分享┆PEER:使用多智能体框架和调优方法完成特定领域任务 本推文主要介绍了一种新的智能体框架,用于完成特定领域任务,名为PEER。论文《PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods》通过计划、执行、表达和审查多智能体协作完成特定领域任务的方法,在任务处理效率和回答质量上显著优于现有的多智能体方案,如BabyAGI,尤其在金融和复杂信息处理场景中表现突出。
ECCV 2024论文分享┆Agent Attention:Softmax注意力和线性注意力的高效融合 本推文主要介绍了由清华大学黄高老师团队提出的一种新型的代理注意力(Agent Attention)。通过引入代理tokens,有效地降低了Transformer模型中的计算复杂度,同时保持了强大的全局建模能力。
交通类中文顶级期刊《交通运输工程学报》第二届青年编委会正式成立 交通运输工程学报》是由中华人民共和国新闻出版总署和科学技术部批准,教育部主管,长安大学主办,国务院学位委员会交通运输工程学科评议组、西南交通大学与东南大学共同协办,为交通运输工程一级学科服务的学术性期刊。《交通运输工程学报》是交通运输领域高水平的学术理论刊物,报道范围涵盖铁路、公路、航空、水运、管道五大运输方式;被美国《工程索引》(Ei)、《中国科学引文数据库》(CSCD核心库)、荷兰《斯高帕斯数据库》(Scopus)等权威数据库收录。并于2019年荣获“中国科技期刊卓越行动计划”资助;
智能交通论文分享┆双模流量预测的模式匹配动态记忆网络 本推文介绍了一篇用于多模交通预测的模式匹配动态记忆网络。该模型由时间嵌入生成器、动态记忆门控循环单元和转移注意机制模块组成,在显著降低了计算开销的同时,保证了预测性能。
CIKM 2024论文分享┆PMORS:一种基于帕累托优化和遗忘曲线的多目标推荐系统 本推文详细介绍了一篇CIKM 2024的最新论文,论文提出了一种基于帕累托优化和遗忘曲线的多目标推荐系统(PMORS)来处理用户的显式负反馈,并在多个优化目标间设计优化器动态平衡,从而达成帕累托优化,同时提升用户体验和推荐效果。
KDD 2024论文分享┆用于序列推荐的数据集再生 该论文提出了基于数据中心化的DR4SR框架,通过模型无关的数据再生生成具有跨架构泛化能力的训练数据集,并引入了DR4SR+框架,通过模型感知的数据个性化器定制数据集。实验表明该框架在多个数据集上显著提升了性能。
ICDE 2024最新论文分享|BEEP:容量约束下能够对抗异常干扰的航运动态定价系统 本推文介绍了一篇发表于顶级数据工程会议ICDE的论文,作者在文中提出了一种航运定价系统,该系统紧贴真实航运场景,综合考虑了超售和罕见冲击等关键影响因素,能够极大提升收益。
ICML 2024 论文分享┆一个简单且通用的交通预测提示调优框架 推文介绍了一种用于将时空预测模型适应未见数据的框架FlashST。它通过时空提示网络捕捉上下文信息并建模时空关系,结合统一分布映射机制,有效解决了预训练数据与下游数据的分布差异,促进知识转移。
WWW 2024最新论文分享┆用于用户响应预测的时间兴趣网络 本推文详细介绍了一篇上海交通大学高晓沨教授和陈贵海教授团队发表在顶级学术会议WWW 2024的最新论文。为此,该研究提出了一种新型的时间兴趣网络(TIN),模型能够更好的衡量用户行为中的语义-时间相关性模式。
实验室《中国图象图形学报》论文分享┆智能交通系统中的车辆标志识别方法综述 本推文详细介绍了一篇实验室的最新论文成果《智能交通系统中的车辆标志识别方法综述》,该论文发表于《中国图象图形学报》,论文的第一作者为李杨。该论文主要对近十年内主流的车标识别方法进行了系统概述,为后续研究者提供参考。
西安交大曹相湧、孟德宇教授团队最新成果┆HSIGene: 一个用于高光谱图像生成的基础模型(含详细视频解读) 本研究提出了可控高光谱生成模型HSIGene,并基于两阶段空间超分的方法实现了数据增强,有效提升模型可控生成性能。实验结果表明,该模型可以生成大量高质量高光谱数据,有效提升下游任务性能。