人工智能之机器人

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wwlast/article/details/8210206

       学习机器人知识,首先清楚的是机器人的本质,即什么是机器人?现在只要有个能动的铁块亦或是能跑的小车就敢称机器人,其实我认为目前关于机器人定义最好的就是Turing Testing:a human judge engages in a natural language conversation with a human and a machine designed to generate performance indistinguishable from that of a human being. All participants are separated from one another. If the judge cannot reliably tell the machine from the human, the machine is said to have passed the test。所谓机器人更多是给机器赋予人的特性,能够将人的物理和心智行为投射到机器中,某种意义上我觉得将 Robot 翻译成自动人亦或智能人,能够更好的阐释这种已经开始崭露头角的智能机器,因为机器人随着技术上的提升和商业上的运用,会越来越接近人的属性甚至是超过人,而离机器的属性越来越远,最终脱离人的操纵,实现自我导向的进化,所以机器人的本质是机器智能化,即抽取智能迁移到机器。当然以目前的技术水平和商用水平来说,离真正的智能人还是需要比较长的时间。


        学习机器人知识的第一原则,是把握好识别和反馈。既然是机器智能化,那么智能从何而来?智能是人不断总结前人经验,不断探索自然的结果。工业革命之前更多的人的物理行为的初级拓展,工业革命带来了更深层次的行为拓展,如古人制造了船,现代人发明了航母,这些本质上来说都是对人的外在技能进行几何级的提升。而随着计算机的发明,人们开始探索心智行为的拓展,目前主要就是通过软件的形式操纵机器。软件已经成为了计算机的灵魂,通过键盘,鼠标等外设识别输入,通过计算反馈结果呈现。可以说当前计算机已经具备了初级的识别和反馈。机器人则应该是比计算机更深层次的识别和反馈,亦如工业社会对农业社会生产力的提高。从某种意义上讲,机器人属于定义更广泛的计算机。机器人的智能将会支撑更深层次的识别和反馈,可以说智能对机器人的作用就直接体现识别和反馈上,更加智能的识别、智能的反馈的模块构成了机器人发展的动力。我相信把握这一原则学习机器人能够更透彻的理解知识,最后进行知识的整合带来整体的宏观认识。


         既然说到机器人的模块,那机器人的模块有哪些呢,即机器人的知识结构是什么样的呢?这就需要说到人本身的构造了,毕竟机器人是由人通过物理和心智投射而来的。一般说来,人的识别无外乎“色香声味触法”,经过大脑中无数个神经元的运动,以行为的方式体现反馈。所以机器人也需要有自己的色香声味触法”,大脑和手足眼喉,这些就构成了机器人的知识架构。首先物质决定意识,再好的智能也必须将外在的硬件作为落脚点。摄像头、传感器、麦克、处理器、电机、驱动轮等外设构成单个机器人,通过远程通信协议,短距离通信协议进行机器人之间的信息交互形成群体机器人,这些硬件就是机器人的构成基础,即机器人的机器部分;图像、语音、传感器等各种识别算法将提供机器人各种反馈行为的基础数据。这些算法和硬件部分则是通过机器人操作系统连接的:机器人操作系统管理硬件,屏蔽各种硬件差别,上层的各种识别算法通过统一的接口整合基础数据,最后通过人工智能算法进行智能分析,分析结果可以封装API函数提供给应用程序使用,开发者可以通过调用这些函数开发出各种丰富的应用,从而真正让机器人为人类服务。今天将写到这啦,后续文章将会进一步紧扣机器人的本质,学习机器人的各个模块。

没有更多推荐了,返回首页