初析yolov3 tiny 网络模型结构

前言

想上网了解下yolov3 tiny的网络结构,竟然没看到一篇文章详细讲解它的( 可能有,没看到而已。。。)。

Yolo3 tiny网络结构

想知道yolo3 tiny网络模型层次架构,其实很简单。使用下面的命令就可以把它打印出来。

./darknet detector test cfg/coco.data cfg/yolov3-tiny.cfg cfg/yolov3-tiny.weights data/dog.jpg -thresh 0.6

其结果如下: 


layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   13 conv    256  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 256  0.089 BFLOPs
   14 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   15 conv    255  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 255  0.044 BFLOPs
   16 yolo
   17 route  13
   18 conv    128  1 x 1 / 1    13 x  13 x 256   ->    13 x  13 x 128  0.011 BFLOPs
   19 upsample            2x    13 x  13 x 128   ->    26 x  26 x 128
   20 route  19 8
   21 conv    256  3 x 3 / 1    26 x  26 x 384   ->    26 x  26 x 256  1.196 BFLOPs
   22 conv    255  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 255  0.088 BFLOPs
   23 yolo
Loading weights from cfg/yolov3-tiny.weights...Done!
data/dog.jpg: Predicted in 0.003733 seconds.

结构分析 

从上面的网络结构打印信息,可以得出一些初步的结论:

1)总共只有24网络层,比yolo3 107层大为减少。

2)只有两个yolo层,分别是yolo16和yolo23   其大小分别为13x13和26x26 此外,每个yolo层也对应有3个anchors,总共有6个anchors值。

3)yolo层前面是一个1x1的卷积层,该层的输入和输出部分保持width, height以及channels不变。在darknet里面,其卷积公式为:output = (input + padding - kernel_size) / stride + 1。  这里padding = 0. 

 

### YOLOv7-Tiny 模型架构图与网络结构可视化 YOLOv7-Tiny 是一种轻量化的目标检测模型,其设计旨在减少计算资源消耗的同时保持较高的检测精度。以下是关于该模型的架构及其可视化的详细介绍。 #### 1. **YOLOv7-Tiny 的基本组成** YOLOv7-Tiny 的整体架构继承了 YOLO 家族的核心设计理念,即通过单阶段(one-stage)的方式完成目标检测任务。它主要由以下几个部分构成[^3]: - **骨干网络 (Backbone)** 骨干网络负责提取输入图像中的特征。YOLOv7-Tiny 使用了一个简化版的 CSPDarknet 结构来降低参数数量和计算复杂度。 - **颈部网络 (Neck)** 颈部网络用于增强特征表示能力。通常会引入 FPN(Feature Pyramid Network)或 PANet(Path Aggregation Network),以便更好地融合多尺度特征。 - **头部网络 (Head)** 头部网络负责预测边界框的位置、类别概率以及置信度得分。对于 Tiny 版本而言,这一部分也经过优化以适应低功耗设备的需求。 这些组件共同构成了 YOLOv7-Tiny 的基础框架,并使其能够在嵌入式平台或其他受限环境中高效运行。 --- #### 2. **如何获取 YOLOv7-Tiny网络结构图** 要获得 YOLOv7-Tiny 的具体网络结构图,可以采取以下方法之一: ##### 方法一:查阅官方文档或论文 如果存在官方发布的技术报告或者学术文章,则可以直接从中找到清晰标注好的架构示意图。例如,在某些项目仓库中可能附带 PDF 文件形式的技术说明材料。 ##### 方法二:利用 PyTorch 工具生成图形化展示 假设已经安装好 Python 环境并且克隆下了对应版本的代码库 `https://github.com/bubbliiiing/yolov4-tiny-pytorch` ,那么可以通过如下脚本绘制出模型拓扑关系图[^1]: ```python import torch from torchviz import make_dot from models.yolo import Model # 加载预定义配置文件路径下的模型实例 model = Model('cfg/yolov7-tiny.yaml') # 创建虚拟张量作为输入样本 dummy_input = torch.randn(1, 3, 640, 640) # 执行前向传播操作并记录中间变量依赖链路 output = model(dummy_input) # 调用绘图函数导出结果保存至本地磁盘位置 dot_graph = make_dot(output, params=dict(model.named_parameters())) dot_graph.render("yolov7_tiny_structure", format="png") # 输出名为 'yolov7_tiny_structure.png' ``` 上述代码片段展示了如何借助第三方库 `torchviz` 来分神经网络内部连接情况,并最终得到一张易于理解的流程图表。 ##### 方法三:参考其他开源实现案例 除了原作者提供的资料外,社区里也可能有开发者分享过类似的解读内容。比如提到过的 “atlas500部署yolov3-tiny检测实时视频流”的博文就有可能涉及相关内容介绍[^2] 。不过需要注意的是不同变种之间可能存在细微差异因此需谨慎对比核实后再应用到实际开发当中去。 --- ### 总结 综上所述,无论是从理论层面还是实践角度出发都可以较为全面地了解 YOLOv7-Tiny 这款优秀算法背后的原理机制;同时也提醒大家在动手尝试之前务必确认所使用的工具链版本号一致以免遇到不必要的兼容性问题!
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ltshan139

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值