这是一系列关于砖块的题目
搬砖
从LGL到学校的路上有n阶由砖头垫成的台阶,但是由于台阶遭到腐蚀,现在的台阶高度不平,第i阶台阶高度为h[i]。现在LGL想要搬砖把台阶的高度变成一个不上升或不下降序列,他可以搬砖放到台阶上使台阶高度+1或者从台阶上搬走使台阶高度-1。请问LGL最少要搬几块砖?
输入格式:
第一行为三个整数n,接下来的n行每行一个整数h[i]。
输出格式:
一个整数,表示LGL最少搬砖块数。
样例输入 | 样例输出 |
7 | 3 |
样例解释:
如变成1224559。当然还有其他的可行方案。
数据范围:
对于100%的数据:1<=n<=2000,1<=h[i]<=109。保证答案不超过231-1。
考虑两次dp,一次不下降,一次不上升。
易发现将高度改为原来数列中已有的高度一定不劣。
对于不下降,dp[i][j]表示做到第i个为止,第i个高度改为原来数列中的第j大所需要的最小花费,随便转移。
不上升同理。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #define ll long long using namespace std; const int N=2017; struct hei{int h,num,ha;}a[N]; int n,b[N],dp[N][N],cnt=0; bool c1(hei a,hei b){return a.h<b.h;} bool c2(hei a,hei b){return a.num<b.num;} inline int abs(int x){return x>0?x:-x;} void init(){ scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&a[i].h); a[i].num=i; } sort(a+1,a+1+n,c1);a[0].h=-1; for(int i=1;i<=n;i++){ if(a[i].h!=a[i-1].h)++cnt; a[i].ha=cnt;b[cnt]=a[i].h; } sort(a+1,a+1+n,c2); } int main() { freopen("brick.in","r",stdin); freopen("brick.out","w",stdout); init(); for(int i=1;i<=n;i++){ dp[i][1]=dp[i-1][1]; for(int j=2;j<=cnt;j++) dp[i][j]=min(dp[i][j-1],dp[i-1][j]); for(int j=1;j<=cnt;j++)dp[i][j]+=abs(b[a[i].ha]-b[j]); } int ans=dp[n][1]; for(int i=2;i<=cnt;i++)ans=min(ans,dp[n][i]); memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++){ dp[i][cnt]=dp[i-1][cnt]; for(int j=cnt-1;j;j--) dp[i][j]=min(dp[i][j+1],dp[i-1][j]); for(int j=1;j<=cnt;j++)dp[i][j]+=abs(b[a[i].ha]-b[j]); } for(int i=1;i<=cnt;i++)ans=min(ans,dp[n][i]); printf("%d",ans); return 0; }
买砖
LGL用光了所有他的砖头。现在他想买至少m块砖,他知道有n家公司卖砖头,第i个公司将p[i]块砖头一起售卖,价格为c[i]。每个公司的砖头数目都远超LGL所需,所以不用担心会卖光。请问LGL买砖头所需的最小钱数。
输入格式:
第一行为两个整数n、m,接下来n行每行两个整数p[i]、c[i]。
输出格式:
一个整数,表示LGL所需的最小钱数。
样例输入 | 样例输出 |
2 15 | 9 |
样例解释:
在第2家公司买3次。
数据范围:
对于100%的数据:1<=n<=100,1<=m<=50000,1<=p[i]、c[i]<=5000。
考虑dp[i][j]表示到第i家为止,买了j块砖所需的最小花费,随便转移。
注意枚举的最大j要比m大4999,更新答案也要从m+4999枚举到m。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; inline int read(){ int t=1,num=0;char c=getchar(); while(c>'9'||c<'0'){if(c=='-')t=-1;c=getchar();} while(c>='0'&&c<='9'){num=num*10+c-'0';c=getchar();} return num*t; } const int M=50010,inf=1e9; int f[M+4999],n,m,c[200],p[200]; int main() { freopen("buy.in","r",stdin); freopen("buy.out","w",stdout); n=read();m=read(); for(int i=0;i<=m+4999;i++)f[i]=inf;f[0]=0; for(int i=1;i<=n;i++)p[i]=read(),c[i]=read(); for(int i=1;i<=n;i++) for(int j=p[i];j<=m+4999;j++) f[j]=min(f[j],f[j-p[i]]+c[i]); int ans=inf; for(int i=m;i<=m+4999;i++)ans=min(f[i],ans); printf("%d\n",ans); return 0; }
看砖
虽然LGL耗尽了自己所有积蓄也没把路铺平,但是他发现了一个有意思的游戏。现在LGL到学校的路上仍然有n块台阶,第i阶台阶高度为h[i]。但是由于台阶太高,LGL现在只知道n阶台阶中最高的台阶是第l阶,高度为maxh,并且还观察出了m组关系。每组关系由a、b两个字母构成,表示LGL站在台阶a上能看到台阶b。由于LGL很矮,所以我们定义“LGL站在a能看到b”为:h[a]<=h[b]并且对于所有i(a<i<b),h[i]<h[a]。请你找出一种可能的台阶高度满足所有关系,并且所有台阶都达到他们能达到的最大高度。
输入格式:
第一行为四个整数n、l、maxh、m,接下来的m行每一行两个数ai和bi,表示一组关系。
输出格式:
n行,每行一个整数,台阶能达到的最大高度。
样例输入 | 样例输出 |
9 3 5 5 | 5 |
样例解释:
没什么好解释的。
数据范围:
对于100%的数据:1<=n<=10000。
将所有关系的a、b排好顺序使a<b,然后按a进行排序。
接着按顺序处理,对于一个关系a、b,将所有a<i<b的i的ans[i]-1,保证a能看到b。
这一步可以通过前缀和变成O(1),最后将ans[i]+maxh就是第i阶台阶可能得到的最大高度。
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> using namespace std; inline int read(){ int t=1,num=0;char c=getchar(); while(c>'9'||c<'0'){if(c=='-')t=-1;c=getchar();} while(c>='0'&&c<='9'){num=num*10+c-'0';c=getchar();} return num*t; } const int N=10010; struct xxx{int l,r;}t[N]; int n,L,h,m,a[N]; bool cmp(xxx x,xxx y){ if(x.l==y.l)return x.r<y.r; return x.l<y.l; } int main() { freopen("watch.in","r",stdin); freopen("watch.out","w",stdout); n=read();L=read();h=read();m=read(); for(int i=1;i<=m;i++){ t[i].l=read();t[i].r=read(); if(t[i].l>t[i].r)swap(t[i].l,t[i].r); } sort(t+1,t+1+m,cmp); t[0].l=t[0].r=-1; for(int i=1;i<=m;i++){ if(t[i].l==t[i-1].l&&t[i].r==t[i-1].r)continue; a[t[i].l+1]++;a[t[i].r]--; } for(int i=1;i<=n;i++)a[i]+=a[i-1]; for(int i=1;i<=n;i++)printf("%d\n",h-a[i]); return 0; }
本文由Yzyet编写,网址为www.cnblogs.com/Yzyet。非Yzyet同意,禁止转载,侵权者必究。