20171015模拟赛

这是一系列关于砖块的题目

搬砖

从LGL到学校的路上有n阶由砖头垫成的台阶,但是由于台阶遭到腐蚀,现在的台阶高度不平,第i阶台阶高度为h[i]。现在LGL想要搬砖把台阶的高度变成一个不上升或不下降序列,他可以搬砖放到台阶上使台阶高度+1或者从台阶上搬走使台阶高度-1。请问LGL最少要搬几块砖?

 

输入格式:

第一行为三个整数n,接下来的n行每行一个整数h[i]。

 

输出格式:

一个整数,表示LGL最少搬砖块数。

 

样例输入

样例输出

7
1
3
2
4
5
3
9

3

 

样例解释:

如变成1224559。当然还有其他的可行方案。

 

数据范围:

对于100%的数据:1<=n<=2000,1<=h[i]<=109。保证答案不超过231-1。

 

考虑两次dp,一次不下降,一次不上升。

易发现将高度改为原来数列中已有的高度一定不劣。

对于不下降,dp[i][j]表示做到第i个为止,第i个高度改为原来数列中的第j大所需要的最小花费,随便转移。

不上升同理。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int N=2017;
struct hei{int h,num,ha;}a[N];
int n,b[N],dp[N][N],cnt=0;
bool c1(hei a,hei b){return a.h<b.h;}
bool c2(hei a,hei b){return a.num<b.num;}
inline int abs(int x){return x>0?x:-x;}
void init(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i].h);
        a[i].num=i;
    }
    sort(a+1,a+1+n,c1);a[0].h=-1;
    for(int i=1;i<=n;i++){
        if(a[i].h!=a[i-1].h)++cnt;
        a[i].ha=cnt;b[cnt]=a[i].h;
    }
    sort(a+1,a+1+n,c2);
}
int main()
{
    freopen("brick.in","r",stdin);
    freopen("brick.out","w",stdout);
    init();
    for(int i=1;i<=n;i++){
        dp[i][1]=dp[i-1][1];
        for(int j=2;j<=cnt;j++)
            dp[i][j]=min(dp[i][j-1],dp[i-1][j]);
        for(int j=1;j<=cnt;j++)dp[i][j]+=abs(b[a[i].ha]-b[j]);
    }
    int ans=dp[n][1];
    for(int i=2;i<=cnt;i++)ans=min(ans,dp[n][i]);
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=n;i++){
        dp[i][cnt]=dp[i-1][cnt];
        for(int j=cnt-1;j;j--)
            dp[i][j]=min(dp[i][j+1],dp[i-1][j]);
        for(int j=1;j<=cnt;j++)dp[i][j]+=abs(b[a[i].ha]-b[j]);
    }
    for(int i=1;i<=cnt;i++)ans=min(ans,dp[n][i]);
    printf("%d",ans);
    return 0;
}
View Code

 

买砖

    LGL用光了所有他的砖头。现在他想买至少m块砖,他知道有n家公司卖砖头,第i个公司将p[i]块砖头一起售卖,价格为c[i]。每个公司的砖头数目都远超LGL所需,所以不用担心会卖光。请问LGL买砖头所需的最小钱数。

 

输入格式:

第一行为两个整数n、m,接下来n行每行两个整数p[i]、c[i]。

 

输出格式:

一个整数,表示LGL所需的最小钱数。

 

样例输入

样例输出

2 15
3 2
5 3

9

 

样例解释:

    在第2家公司买3次。

 

数据范围:

对于100%的数据:1<=n<=100,1<=m<=50000,1<=p[i]、c[i]<=5000。

 

考虑dp[i][j]表示到第i家为止,买了j块砖所需的最小花费,随便转移。

注意枚举的最大j要比m大4999,更新答案也要从m+4999枚举到m。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read(){
    int t=1,num=0;char c=getchar();
    while(c>'9'||c<'0'){if(c=='-')t=-1;c=getchar();}
    while(c>='0'&&c<='9'){num=num*10+c-'0';c=getchar();}
    return num*t;
}
const int M=50010,inf=1e9;
int f[M+4999],n,m,c[200],p[200];
int main()
{
    freopen("buy.in","r",stdin);
    freopen("buy.out","w",stdout);
    n=read();m=read();
    for(int i=0;i<=m+4999;i++)f[i]=inf;f[0]=0;
    for(int i=1;i<=n;i++)p[i]=read(),c[i]=read();
    for(int i=1;i<=n;i++)
        for(int j=p[i];j<=m+4999;j++)
            f[j]=min(f[j],f[j-p[i]]+c[i]);
    int ans=inf;
    for(int i=m;i<=m+4999;i++)ans=min(f[i],ans);
    printf("%d\n",ans);
    return 0;
}
View Code

 

看砖

虽然LGL耗尽了自己所有积蓄也没把路铺平,但是他发现了一个有意思的游戏。现在LGL到学校的路上仍然有n块台阶,第i阶台阶高度为h[i]。但是由于台阶太高,LGL现在只知道n阶台阶中最高的台阶是第l阶,高度为maxh,并且还观察出了m组关系。每组关系由a、b两个字母构成,表示LGL站在台阶a上能看到台阶b。由于LGL很矮,所以我们定义“LGL站在a能看到b”为:h[a]<=h[b]并且对于所有i(a<i<b),h[i]<h[a]。请你找出一种可能的台阶高度满足所有关系,并且所有台阶都达到他们能达到的最大高度。

 

输入格式:

第一行为四个整数n、l、maxh、m,接下来的m行每一行两个数ai和bi,表示一组关系。

 

输出格式:

n行,每行一个整数,台阶能达到的最大高度。

 

样例输入

样例输出

9 3 5 5
1 3
5 3
4 3
3 7
9 8

5
4
5
3
4
4
5
5
5

 

样例解释:

           没什么好解释的。

 

数据范围:

对于100%的数据:1<=n<=10000。

 

将所有关系的a、b排好顺序使a<b,然后按a进行排序。

接着按顺序处理,对于一个关系a、b,将所有a<i<b的i的ans[i]-1,保证a能看到b。

这一步可以通过前缀和变成O(1),最后将ans[i]+maxh就是第i阶台阶可能得到的最大高度。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read(){
    int t=1,num=0;char c=getchar();
    while(c>'9'||c<'0'){if(c=='-')t=-1;c=getchar();}
    while(c>='0'&&c<='9'){num=num*10+c-'0';c=getchar();}
    return num*t;
}
const int N=10010;
struct xxx{int l,r;}t[N];
int n,L,h,m,a[N];
bool cmp(xxx x,xxx y){
    if(x.l==y.l)return x.r<y.r;
    return x.l<y.l;
}
int main()
{
    freopen("watch.in","r",stdin);
    freopen("watch.out","w",stdout);
    n=read();L=read();h=read();m=read();
    for(int i=1;i<=m;i++){
        t[i].l=read();t[i].r=read();
        if(t[i].l>t[i].r)swap(t[i].l,t[i].r);
    }
    sort(t+1,t+1+m,cmp);
    t[0].l=t[0].r=-1;
    for(int i=1;i<=m;i++){
        if(t[i].l==t[i-1].l&&t[i].r==t[i-1].r)continue;
        a[t[i].l+1]++;a[t[i].r]--;
    }
    for(int i=1;i<=n;i++)a[i]+=a[i-1];
    for(int i=1;i<=n;i++)printf("%d\n",h-a[i]);
    return 0;
}
View Code

本文由Yzyet编写,网址为www.cnblogs.com/Yzyet。非Yzyet同意,禁止转载,侵权者必究。

转载于:https://www.cnblogs.com/Yzyet/p/7875500.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值