引言
在当今的技术发展中,生成式AI正在改变我们与信息交互的方式。Vectara作为一个值得信赖的生成式AI平台,提供了RAG(Retrieval-Augmented-Generation)即服务,帮助企业快速创建基于自身数据和知识的类似ChatGPT的体验。本篇文章旨在介绍如何使用Vectara的Chat功能,通过简单易用的API来探索其强大的RAG能力。
主要内容
1. 什么是Vectara Chat?
Vectara Chat集成了RAG即服务的所有组件,包括文本提取、ML分块、Boomerang嵌入模型、内部矢量数据库、查询服务及负责生成文档总结的LLM。它使用户可以在不管理复杂后台的情况下,轻松创建和运行AI助手。
2. 获取开始:账户与API配置
- 注册: 首先,您需要注册Vectara账户,并获取客户ID。
- 创建语料库: 在您的账户中,创建一个或多个语料库,它们将存储从输入文档提取的文本数据。
- API密钥: 配置API访问权限,通过生成API密钥以进行查询或索引。
3. 集成LangChain
使用LangChain与Vectara集成时,您需要客户ID、语料库ID和API密钥。您可以通过环境变量或直接在代码中提供这些信息。以下是通过环境变量设置的示例:
import os
import getpass
os.environ["VECTARA_CUSTOMER_ID"] = getpass.getpass("Vectara Customer ID:")
os.environ["VECTARA_CORPUS_ID"] = getpass.getpass("Vectara Corpus ID:")
os.environ["VECTARA_API_KEY"] = getpass.getpass("Vectara API Key:")
4. 创建Chat功能
在LangChain中,您可以轻松通过Vectara
类来实现Chat功能,并进行详细配置。以下是一个简单的实现:
from langchain_community.vectorstores import Vectara
from langchain_community.vectorstores.vectara import (
RerankConfig,
SummaryConfig,
VectaraQueryConfig,
)
# 加载文本文件
from langchain.document_loaders import TextLoader
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
vectara = Vectara.from_documents(documents, embedding=None)
# 配置Chat
summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang="eng")
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(
k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config
)
bot = vectara.as_chat(config)
通过上述配置,您可以启动一个简单的Chat功能,根据提供的文档进行查询并获得生成的响应。
代码示例
以下是一个完整示例,展示如何在没有聊天历史的情况下进行查询:
response = bot.invoke("What did the president say about Ketanji Brown Jackson?")["answer"]
print(response)
常见问题和解决方案
- API访问不稳定: 由于某些地区的网络限制,建议使用API代理服务来提高访问的稳定性。
- 配置错误: 确保API密钥和ID正确无误且保持机密。
总结与进一步学习资源
Vectara提供了一种简单而强大的方式来构建AI助手,结合自身的数据和知识库。这使得创建智能且上下文相关的对话系统变得更加容易。为了进一步探索,请通过以下资源了解更多信息:
参考资料
- Vectara 官方文档
- LangChain 社区文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—