探索Vectara Chat:创建您自己的AI助手

引言

在当今的技术发展中,生成式AI正在改变我们与信息交互的方式。Vectara作为一个值得信赖的生成式AI平台,提供了RAG(Retrieval-Augmented-Generation)即服务,帮助企业快速创建基于自身数据和知识的类似ChatGPT的体验。本篇文章旨在介绍如何使用Vectara的Chat功能,通过简单易用的API来探索其强大的RAG能力。

主要内容

1. 什么是Vectara Chat?

Vectara Chat集成了RAG即服务的所有组件,包括文本提取、ML分块、Boomerang嵌入模型、内部矢量数据库、查询服务及负责生成文档总结的LLM。它使用户可以在不管理复杂后台的情况下,轻松创建和运行AI助手。

2. 获取开始:账户与API配置

  • 注册: 首先,您需要注册Vectara账户,并获取客户ID。
  • 创建语料库: 在您的账户中,创建一个或多个语料库,它们将存储从输入文档提取的文本数据。
  • API密钥: 配置API访问权限,通过生成API密钥以进行查询或索引。

3. 集成LangChain

使用LangChain与Vectara集成时,您需要客户ID、语料库ID和API密钥。您可以通过环境变量或直接在代码中提供这些信息。以下是通过环境变量设置的示例:

import os
import getpass

os.environ["VECTARA_CUSTOMER_ID"] = getpass.getpass("Vectara Customer ID:")
os.environ["VECTARA_CORPUS_ID"] = getpass.getpass("Vectara Corpus ID:")
os.environ["VECTARA_API_KEY"] = getpass.getpass("Vectara API Key:")

4. 创建Chat功能

在LangChain中,您可以轻松通过Vectara类来实现Chat功能,并进行详细配置。以下是一个简单的实现:

from langchain_community.vectorstores import Vectara
from langchain_community.vectorstores.vectara import (
    RerankConfig,
    SummaryConfig,
    VectaraQueryConfig,
)

# 加载文本文件
from langchain.document_loaders import TextLoader

loader = TextLoader("state_of_the_union.txt")
documents = loader.load()

vectara = Vectara.from_documents(documents, embedding=None)

# 配置Chat
summary_config = SummaryConfig(is_enabled=True, max_results=7, response_lang="eng")
rerank_config = RerankConfig(reranker="mmr", rerank_k=50, mmr_diversity_bias=0.2)
config = VectaraQueryConfig(
    k=10, lambda_val=0.005, rerank_config=rerank_config, summary_config=summary_config
)

bot = vectara.as_chat(config)

通过上述配置,您可以启动一个简单的Chat功能,根据提供的文档进行查询并获得生成的响应。

代码示例

以下是一个完整示例,展示如何在没有聊天历史的情况下进行查询:

response = bot.invoke("What did the president say about Ketanji Brown Jackson?")["answer"]
print(response)

常见问题和解决方案

  1. API访问不稳定: 由于某些地区的网络限制,建议使用API代理服务来提高访问的稳定性。
  2. 配置错误: 确保API密钥和ID正确无误且保持机密。

总结与进一步学习资源

Vectara提供了一种简单而强大的方式来构建AI助手,结合自身的数据和知识库。这使得创建智能且上下文相关的对话系统变得更加容易。为了进一步探索,请通过以下资源了解更多信息:

参考资料

  1. Vectara 官方文档
  2. LangChain 社区文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值