【题目描述】
北大信息学院的同学小明毕业之后打算创业开餐馆.现在共有n 个地点可供选择。小明打算从中选择合适的位置开设一些餐馆。这 n 个地点排列在同一条直线上。我们用一个整数序列m1, m2, ... mn 来表示他们的相对位置。由于地段关系,开餐馆的利润会有所不同。我们用pi 表示在mi 处开餐馆的利润。为了避免自己的餐馆的内部竞争,餐馆之间的距离必须大于k。请你帮助小明选择一个总利润最大的方案。
【题目链接】
http://noi.openjudge.cn/ch0206/6045/
【分析】
所谓动态规划,本质上就是一个决策序列。而编程所需要做的就是从边界出发动态的维护每个状态的最优决策(但不一定都是最终决策的一部分,目的是为下一步决策服务)。以此题为例,n个地点,那么很显然n次决策,判断第i个点是否加入序列之中,于是定义dp【i】表示在第i个点的位置的最大利润,为达到最优,则每个状态取包括第i个点和不包括两种情况最大值。
【代码】
1 #include <bits/stdc++.h> 2 using namespace std; 3 int t,n,k,i,j,pre; 4 int a[110],v[110],dp[110]; 5 int main() 6 { 7 scanf("%d",&t); 8 while(t--) { 9 memset(dp,0,sizeof(dp)); 10 scanf("%d%d",&n,&k); 11 for(i=1;i<=n;i++) scanf("%d",&a[i]); 12 for(i=1;i<=n;i++) scanf("%d",&v[i]); 13 for(i=1;i<=n;i++) { 14 int pre=0; 15 for(j=i-1;j>=0;j--) 16 if(a[i]-a[j]>k) { pre=j; break; } 17 dp[i]=max(dp[i-1],dp[pre]+v[i]); 18 } 19 printf("%d\n",dp[n]); 20 } 21 return 0; 22 }