洛谷P3758 - [TJOI2017]可乐

Portal

Description

给出一张\(n(n\leq30)\)个点\(m(m\leq100)\)条边的无向图。初始时有一个可乐机器人在点\(1\),这个机器人每秒会做出以下三种行为之一:原地不动,走向相邻点,自爆(自爆后就不能动了)。求经过\(t(t\leq10^6)\)秒后可乐机器人的行动方案数。

Solution

矩阵乘法优化DP。
首先改一下原图:每个点向自己连一条自环;建立一个点\(n+1\)表示自爆,其余每个点向\(n+1\)连一条有向边。然后原问题就简化成了在一个有向图上,每秒走向一个相邻的点。
\(dp[i][x]\)表示机器人在第\(i\)秒时在点\(x\)有多少种方案。做出邻接矩阵\(M\),则转移方程为:
\[ dp[i+1][v]=\sum_{u=1}^n \sum_{v=1}^n dp[i][u]M_{uv} \] 是不是和矩阵乘法有点像?将\(dp[i]\)看做一个向量,则有\(dp[i]=dp[i-1]\times M\)。我们要求的是\(dp[t]=dp[1]\times M^t\),那么只要做矩阵快速幂就好啦。

时间复杂度\(O(n^3logt)\)

Code

//[TJOI2017]可乐
#include <cstdio>
#include <cstring>
inline char gc()
{
    static char now[1<<16],*s,*t;
    if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
    return *s++;
}
inline int read()
{
    int x=0; char ch=gc();
    while(ch<'0'||'9'<ch) ch=gc();
    while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x;
}
const int P=2017;
const int N=40;
int n,m;
struct mtx
{
    int row,col; int x[N][N];
    mtx(int _row=0,int _col=0) {row=_row,col=_col; memset(x,0,sizeof x);}
    friend mtx operator *(mtx A,mtx B)
    {
        mtx C=mtx(A.row,B.col);
        for(int i=1;i<=A.row;i++)
            for(int k=1;k<=A.col;k++)
                for(int j=1;j<=B.col;j++)
                    C.x[i][j]=(C.x[i][j]+A.x[i][k]*B.x[k][j])%P;
        return C;
    }
};
mtx pow(mtx A,int k)
{
    mtx r=mtx(A.row,A.col),t=A;
    for(int i=1;i<=A.row;i++) r.x[i][i]=1;
    for(int i=k;i;i>>=1,t=t*t) if(i&1) r=r*t;
    return r;
}
int main()
{
    n=read(),m=read(); mtx tr=mtx(n+1,n+1);
    for(int i=1;i<=n+1;i++) tr.x[i][i]=1,tr.x[i][n+1]=1;
    for(int i=1;i<=m;i++)
    {
        int u=read(),v=read();
        tr.x[u][v]=tr.x[v][u]=1;
    }
    int t=read(); mtx r=mtx(1,n+1);
    r.x[1][1]=1; r=r*pow(tr,t);
    int ans=0;
    for(int i=1;i<=n+1;i++) ans=(ans+r.x[1][i])%P;
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/VisJiao/p/LgP3758.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值