BZOJ4408 - [FJOI2016]神秘数

Portal

Description

一个可重复数字集合\(S\)的神秘数定义为最小的不能被\(S\)的子集的和表示的正整数。现给出一个\(n(n\leq10^5)\)个数的数列\(\{a_n\}(\Sigma a_i\leq10^9)\)\(m(m\leq10^5)\)次询问,每次给出两个数\(L,R\),求集合\(\{a_{L..R}\}\)的神秘数。

Solution

可持久化线段树。
首先考虑如何求出集合的神秘数。定义\(t\)\(ans\),表示用不超过\(t\)的元素能够凑成\([1,ans-1]\)中的所有数。初始时有\(t=0,ans=1\)。接下来考虑加上一个数\(x\)后对\(ans\)有何影响。若\(x>ans\)则依然无法凑出\(ans\),不变;否则能够凑出\([1,ans+x-1]\)中的所有数,\(ans=ans+x\)。那么求出\([t+1,ans]\)中所有元素的和,加到\(ans\)上就得到了新的\(ans\),新的\(t\)等于原\(ans\)。简化一下过程:初始\(ans=1\),每次令\(ans\)等于\([1,ans]\)中所有元素的和\(+1\),直到\(ans\)不再增大为止。由于\(ans\)每次如果增大则至少增大\(t+1\),所以最多进行\(log\)次。
那么建立\(n\)棵权值线段树分别记录前若干个数中的权值分布情况,询问区间\([L,R]\)时用线段树\(R\)减线段树\(L-1\)即可。

时间复杂度\(O(mlog^2n)\)

Code

//[FJOI2016]神秘数
#include <cstdio>
typedef long long lint;
inline char gc()
{
    static char now[1<<16],*s,*t;
    if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
    return *s++;
}
inline int read()
{
    int x=0; char ch=gc();
    while(ch<'0'||'9'<ch) ch=gc();
    while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x;
}
const int N=1e5+10;
int n,m;
int cnt,rt[N];
struct node{int chL,chR; lint sum;} nd[N*32];
void update(int p) {nd[p].sum=nd[nd[p].chL].sum+nd[nd[p].chR].sum;}
void ins(int &p,int L0,int R0,int x)
{
    nd[++cnt]=nd[p]; p=cnt;
    if(L0==R0) {nd[p].sum+=x; return;}
    int mid=L0+R0>>1;
    if(x<=mid) ins(nd[p].chL,L0,mid,x);
    else ins(nd[p].chR,mid+1,R0,x);
    update(p);
}
lint optL,optR; lint qres;
void query(int p1,int p2,int L0,int R0)
{
    if(p1==p2) return;
    if(optL<=L0&&R0<=optR) {qres+=nd[p2].sum-nd[p1].sum; return;}
    int mid=L0+R0>>1;
    if(optL<=mid) query(nd[p1].chL,nd[p2].chL,L0,mid);
    if(mid<optR) query(nd[p1].chR,nd[p2].chR,mid+1,R0);
}
int main()
{
    n=read(); int maxA=1e9;
    for(int i=1;i<=n;i++)
        ins(rt[i]=rt[i-1],1,maxA,read());
    m=read();
    for(int i=1;i<=m;i++)
    {
        int L=read(),R=read();
        lint ans=1;
        while(true)
        {
            optL=1,optR=ans,qres=0,query(rt[L-1],rt[R],1,maxA);
            if(qres<ans) break; else ans=qres+1;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

P.S.

我又开始懒得写题解了...
本来我想权值\(10^9<2^{30}\)所以线段树只开了\(30N\)个节点,但事实上应该开\(31N\) 0(xp )~

转载于:https://www.cnblogs.com/VisJiao/p/BZOJ4408.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现据的非线性回归,并通过不同的核函设置来适应不同类型的据分布。此外,该程序还提供了据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函 核函的选择直接影响到模型的性能。本程序内置了三种常用的核函: - **线性核函**:`K(x, y) = x'y` - **多项式核函**:`K(x, y) = (x'y + 1)^d` - **径向基函(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函,参`D`用于控制高斯核函的宽度。 ##### 3. 据预处理 虽然程序本身没有直接涉及据预处理的过程,但在实际应用中,对据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征量,l是样本量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系。 - `D`: RBF核函的参。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函和约束条件,使用`quadprog`函求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函支持**:可以通过增加更多的核函选项,提高程序的灵活性。 - **自动调参**:实现参自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函和参,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函设置和参调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值