2017国家集训队作业[agc016e]Poor Turkey

2017国家集训队作业[agc016e]Poor Turkey

题意:

一开始有\(N\)只鸡是活着的,有\(M\)个时刻,每个时刻有两个数\(X_i,Y_i\),表示在第\(i\)个时刻在\(X_i,Y_i\)之中选出一只还活着的鸡乃伊组特,如果两只鸡在这之前就已经被干掉,保持原状。问:\(M\)个时刻后有多少对鸡可能同时存活?(\(N\leq400,M\leq 10^5\)

题解:

容易发现一只鸡在每一个决策中不被选中的必要条件,就是要么这个决策没有它这个选项,要么就是另一只鸡在此之前也没有被乃伊组特掉,那另一只鸡在此之前也要满足这个条件。然后每一只鸡对应了一只集合,两只鸡能同时存活当且仅当它们各自的集合没有冲突,两个集合间没有交集。(冲突是指计算集合时,存在一只集合中的鸡被计算了两次。)数据范围较小,瞎搞即可。(然而在场上花5分钟打了个假的,获得了一分的好成绩,成功突出!)

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define eps 1e-8
#define fo(i,l,r) for(int i=l;i<=r;i++)
#define of(i,l,r) for(int i=l;i>=r;i--)
using namespace std;

inline int rd()
{
    int x=0,f=1;
    char ch=getchar();
    for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
    for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
    return x*f;
}
const int N=410,M=100010;
struct kill{int x,y;}a[M];
int n,m;
bool S[N][N],f[N];

inline bool gao(int u)
{
    S[u][u]=1;
    of(i,m,1){
        int x=a[i].x,y=a[i].y;
        if(S[u][x]&&S[u][y])return 0;
        if(S[u][x]||S[u][y])S[u][x]=S[u][y]=1;
    }
    return 1;
}

int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    #endif
    n=rd();m=rd();
    fo(i,1,m)a[i].x=rd(),a[i].y=rd();
    fo(i,1,n)f[i]=gao(i);
    int ans=0;
    fo(i,1,n-1){
        if(!f[i])continue;
        fo(j,i+1,n){
            if(!f[j])continue;
            bool flag=1;
            fo(k,1,n)if(S[i][k]&&S[j][k]){flag=0;break;}
            ans+=flag;
        }
    }
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/JackyhhJuRuo/p/9531797.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值