做一个logitic分类之鸢尾花数据集的分类
Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于(iris-setosa, iris-versicolour, iris-virginica)中的哪一品种。
首先我们来加载一下数据集。同时大概的展示下数据结构和数据摘要。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
data = pd.read_csv('./data/iris.csv')
print(data.head())
print(data.info())
print(data['Species'].unique())
Unnamed: 0 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
0 1 5.1 3.5 1.4 0.2 setosa
1 2 4.9 3.0 1.4 0.2 setosa
2 3 4.7 3.2 1.3 0.2 setosa
3 4 4.6 3.1 1.5 0.2 setosa
4 5 5.0 3.6 1.4 0.2 setosa
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Unnamed: 0 150 non-null int64
Sepal.Length 150 non-null float64
Sepal.Width 150 non-null float64
Petal.Length 150 non-null float64
Petal.Width 150 non-null float64
Species 150 non-null object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
None
['setosa' 'versicolor' 'virginica']
通过上述数据的简单摘要,我们可以得到鸢尾花一共有三类:
- setosa
- versicolor
- virginica
我们分别用0,1,2来表示['setosa' 'versicolor' 'virginica']
整理
首先,我们对数据集进行一个简单的整理。我们需要把分类替换成0,1,2
其次,我们把数据集分成两个分类,一个用来训练我们的logitic算法的参数,另外一个用来测试我们的训练的结果
以下是代码:
# 数值替换
data.loc[data['Species']=='setosa','Species']=0
data.loc[data['Species']=='versicolor','Species']=1
data.loc[data['Species']=='virginica','Species']=2
print(data)
Unnamed: 0 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
0 1 5.1 3.5 1.4 0.2 0
1 2 4.9 3.0 1.4 0.2 0
2 3 4.7 3.2 1.3 0.2 0
3 4 4.6 3.1 1.5 0.2 0
4 5 5.0 3.6 1.4 0.2 0
.. ... ... ... ... ... ...
145 146 6.7 3.0 5.2 2.3 2
146 147 6.3 2.5 5.0 1.9 2
147 148 6.5 3.0 5.2 2.0 2
148 149 6.2 3.4 5.4 2.3 2
149 150 5.9 3.0 5.1 1.8 2
[150 rows x 6 columns]
#分割训练集和测试集
train_data = data.sample(frac=0.6,random_state=0,axis=0)
test_data = data[~data.index.isin(train_data.index)]
train_data = np.array(train_data)
test_data = np.array(test_data)
train_label = train_data[:,5:6].astype(int)
test_label = test_data[:,5:6].astype(int)
print(train_label[:1])
print(test_label[:1])
train_data = train_data[:,1:5]
test_data = test_data[:,1:5]
print(np.shape(train_data))
print(np.shape(train_label))
print(np.shape(test_data))
print(np.shape(test_label))
[[2]]
[[0]]
(90, 4)
(90, 1)
(60, 4)
(60, 1)
我们需要把label编程1ofN的样式
经过上述两步的操作,我们可以看到数据集被分成两个部分。我们接下来对数据进行logitic分类。
train_label_onhot = np.eye(3)[train_label]
test_label_onhot = np.eye(3)[test_label]
train_label_onhot = train_label_onhot.reshape((90,3))
test_label_onhot = test_label_onhot.reshape((60,3))
print(train_label_onhot[:3])
[[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]]
分类
思路
我选选择先易后难的方法来处理这个问题:
如果我们有两个分类0或者1的话,我们需要判断特征值X(N维)是否可以归为某个分类。我们的步骤如下:
- 初始化参数w(1,N)和b(1)
- 计算 \(z = \sum_{i=0}^{n}w*x + b\)
- 带入\(\sigma\)函数得到\(\hat{y}=\sigma(z)\)
现在有多个分类, 我们就需要使用one-to-many的方法去计算。简单的理解,在本题中,一共有3个分类。我们需要计算\(\hat{y}_1\)来表明这个东西是分类1或者不是分类1的概率 \(\hat{y}_2\)是不是分类2的概率,\(\hat{y}_3\)是不是分类3的概率。然后去比较这三个分类那个概率最大,就是哪个的概率。
比较属于哪个概率大的算法,我们用softmat。就是计算\(exp(\hat{y}_1)\),\(exp(\hat{y}_2)\),\(exp(\hat{y}_3)\),然后得到属于三个分类的概率分别是
- p1=\(\frac{exp(\hat{y}_1)}{\sum_{i=0}{3}(\hat{y}_i)}\)
- p1=\(\frac{exp(\hat{y}_2)}{\sum_{i=0}{3}(\hat{y}_i)}\)
- p1=\(\frac{exp(\hat{y}_3)}{\sum_{i=0}{3}(\hat{y}_i)}\)
我们根据上述思想去计算一条记录,代码如下:
def sigmoid(s):
return 1. / (1 + np.exp(-s))
w = np.random.rand(4,3)
b = np.random.rand(3)
def get_result(w,b):
z = np.matmul(train_data[0],w) +b
y = sigmoid(z)
return y
y = get_result(w,b)
print(y)
[0.99997447 0.99966436 0.99999301]
上述代码是我们只求一条记录的代码,下面我们给他用矩阵化修改为一次计算全部的训练集的\(\hat{y}\)
def get_result_all(data,w,b):
z = np.matmul(data,w)+ b
y = sigmoid(z)
return y
y=get_result_all(train_data,w,b)
print(y[:10])
[[0.99997447 0.99966436 0.99999301]
[0.99988776 0.99720719 0.9999609 ]
[0.99947512 0.98810796 0.99962362]
[0.99999389 0.99980632 0.999999 ]
[0.9990065 0.98181945 0.99931113]
[0.99999094 0.9998681 0.9999983 ]
[0.99902719 0.98236513 0.99924728]
[0.9999761 0.99933525 0.99999313]
[0.99997542 0.99923594 0.99999312]
[0.99993082 0.99841774 0.99997519]]
接下来我们要求得一个损失函数,来计算我们得到的参数和实际参数之间的偏差,关于分类的损失函数,请看这里
单个分类的损失函数如下:
\[loss=−\sum_{i=0}^{n}[y_iln\hat{y}_i+(1−y_i)ln(1−\hat{y}_i)]\]
损失函数的导数求法如下
当 \(y_i=0\)时
w的导数为:
\[ \frac{dloss}{dw}=(1-y_i)*\frac{1}{1-\hat{y}_i}*\hat{y}_i*(1-\hat{y}_i)*x_i \]
化简得到
\[ \frac{dloss}{dw}=\hat{y}*x_i=(\hat{y}-y)*x_i \]
b的导数为
\[ \frac{dloss}{db}=(1-y_i)*\frac{1}{1-\hat{y}_i}*\hat{y}_i*(1-\hat{y}_i) \]
化简得到
\[\frac{dloss}{db}=\hat{y}-y\]
当\(y_i\)=1时
w的导数
\[ \frac{dloss}{dw}=-yi*\frac{1}{\hat{y}}*\hat{y}(1-\hat{y})*x_i \]
化简
\[ \frac{dloss}{dw}=(\hat{y}-1)*x_i=(\hat{y}-y)*x_i \]
b的导数
\[\frac{dloss}{dw}=\hat{y}-y\]
综合起来可以得到
\[ \frac{dloss}{dw}=\sum_{i=0}^{n}(\hat{y}-y)*x_i \]
\[ \frac{dloss}{db}=\sum_{i=0}^{n}(\hat{y}-y) \]
我们只需要根据以下公式不停的调整w和b,就是机器学习的过程
\[w=w-learning_rate*dw\]
\[b=b-learning_rate*db\]
下面我们来写下代码:
learning_rate = 0.0001
def eval(data,label, w,b):
y = get_result_all(data,w,b)
y = y.argmax(axis=1)
y = np.eye(3)[y]
count = np.shape(data)[0]
acc = (count - np.power(y-label,2).sum()/2)/count
return acc
def train(step,w,b):
y = get_result_all(train_data,w,b)
loss = -1*(train_label_onhot * np.log(y) +(1-train_label_onhot)*np.log(1-y)).sum()
dw = np.matmul(np.transpose(train_data),y - train_label_onhot)
db = (y - train_label_onhot).sum(axis=0)
w = w - learning_rate * dw
b = b - learning_rate * db
return w, b,loss
loss_data = {'step':[],'loss':[]}
train_acc_data = {'step':[],'acc':[]}
test_acc_data={'step':[],'acc':[]}
for step in range(3000):
w,b,loss = train(step,w,b)
train_acc = eval(train_data,train_label_onhot,w,b)
test_acc = eval(test_data,test_label_onhot,w,b)
loss_data['step'].append(step)
loss_data['loss'].append(loss)
train_acc_data['step'].append(step)
train_acc_data['acc'].append(train_acc)
test_acc_data['step'].append(step)
test_acc_data['acc'].append(test_acc)
plt.plot(loss_data['step'],loss_data['loss'])
plt.show()
plt.plot(train_acc_data['step'],train_acc_data['acc'],color='red')
plt.plot(test_acc_data['step'],test_acc_data['acc'],color='blue')
plt.show()
print(test_acc_data['acc'][-1])
[png]
0.9666666666666667
从上述运行结果中来看,达到了96.67%的预测准确度。还不错!