关于CC的完全非线性椭圆方程一书的一些小结

CC的整本书主要是想要研究在粘性解的框架下的一致椭圆方程解的正则性。我们试着一章一章来解析他。

序言部分也是值得每一个字细读的,主要讲述了他们的工作的主要内容,即在粘性解的框架下研究解的正则性,需要特别注意的是,他研究的是一致椭圆方程,整本书的理论并没有超出出Bellman方程,Issac方程的范围太多。实际上,我们可以把他们看作是某种思想方法的一个总结,期望可以将这些想法推广到其他方程上面去,当然Caffarelli成功的将他们应用到MA方程的研究中。第一章,CC给出了用来研究粘性解正则性的一个“天才”式的想法,即用抛物面的接触,线性函数的逼近来研究函数的性质。特别是对于二阶导数,他们用$\theta$函数来控制,它是一个可测函数,且用它可以控制二阶导数的在逐点意义下的值。这一点,才开始学时是不能太明白的。就好比,你要描叙一个函数在二阶导数的值的绝对值不超过1,那么你如果直接用逐点的导数来说明,那么这样一个结果在迭代过程中是没有用处的,必要要有一个Infinitasmal的角度来描述,也就是相当于减掉线性部分以后,用$r^2$来控制就能说明这才是你真正想要的东西。实际也就是,你需要一个Scaling不变的,且可以进行迭代的目标,否则就没法做了,这在散度型方程里面就需要用极大函数来描述,而极大函数恰恰是Scaling不变的。也就能说明什么叫“一阶导数、二阶导数”在某一点的值的绝对值不超过1. 有了这样一个定义之后,结合广义函数理论和Riesz表示定理就可以将解的二阶导数的估计用差分来替代,这样就为$W^{2,p}$估计奠定了基础。这里需要主义的是,抛物面局部上可以认为是和球一样的东西,应为和他们接触之后所得到的还是关于某种类型的二阶导数控制,这样就可以定义粘性解了,而Caffarelli关于自由边界问题粘性解的那一套理论正是这个方法和Hopf引理的启发。接下来的内容主要是凸分析和几何测度论的基本知识,特别值得主义的是下半凸函数的几乎处处逐点可微分性质,这在后来的证明中扮演者极其重要的角色.  

 

在第二章,CC给出了粘性解的定理,用常微分方程和调和函数演示了粘性解和古典解的一致性。在给出一致椭圆的定义后,他们开始讨论连续粘性解的定义。这里其实我一直有一个疑问,解的存在性如何保证呢?即$F(M,x)$依赖于$x$的情形。同时关于后来Prop2.8的粘性解延拓定理右端怎么又可以间断了呢?种种迹象总使我觉得有些费解,后来看了wang,Ishii等人的文章发现,最早的二阶方程解的存在性中的粘性解的定义里面并不需要解连续的条件,这也就能理解wang在博士论文中的那句"Ishii用唯一性(比较定理)来证明解的存在性"。其实问题的关键在于你的粘性解是否连续。而Ishii后来主要是通过用边界值相同的上、下解的存在和比较定理的存在来证明连续粘性解的存在性。那么问题又来了,Ishii或者Jensen所说的方程,就算是含有$x$的情形他们所加的条件都比连续性要强。所以我当时困惑了。后来找到了99年Lions等人写的一个关于此类方程的连续到边的粘性解的存在性(包括C-粘性解,L^p粘性解),这才完全解决了我的困惑,他们主要是通过对F逼近来做的。当然这里面最重要的,当然是所谓的比较定理要成立了。同时我觉得不能用第三章的CC的ABP估计来证明比较定理,应为最初是的粘性解是完全不连续的,不知道的,只能用Ishii或者Jensen的方法。接下来, Caffarelli定义了$S(f)$, $\overline{S}(f)$, $\underline{S}(f)$, 这实际上扮演的角色就和De Giorgi Class所起的作用是完全一样的,可以这样认为,他在Krylov和Safonov定理的基础上建立了粘性解理论的De Giorgi 类,而这里的上下拿检验函数来Touch就相当于散度型方程里面的拿test 函数来做能量估计。最后他给出了一些常见的方程的例子,并在Note中说明了如何建立$L^p$粘性解理论。我认为,Caffarelli和Cabre的书上的理论,主要是在粘性解存在的前提条件下来提升正则性,至于粘性解的存在性如何得到?正如上面所说,需要一些适当的条件,比如解Dirichlet,Neuman,Robin边值问题,而Caffarelli在第九章的用所谓的他定义的粘性解关于方程的稳定性,古典的$C^{2,\alpha}$估计和Arlzela,Ascoli定理和比较原理证明了他说的粘性解的存在性。因此以下的论述总是在连续粘性解存在的前提条件下来进行的。对于$S(f)$还有几句话想说,虽然它有很多好的性质,当然主要是乘个实常数,加个线性函数(甚至于光滑函数),本身不会做太多改变,但是如果碰到两个元素相加、相减,他就无能为力了,也就是说,他不是一个线性空间,即它有某种非线性的东西在里面,这也为研究两个正的解在边界做比后的Compasion Harnack造成了麻烦,这也是现在的一个Open problem,当然,边界如果是$C^2$的,则证明是显然的,只需要拉平边界即可。事实上,我可以证明$C^{1,\alpha}, C^{1,R-Dini}$也是正确的,而对于Reifenberg区域,Lipschitz区域,这里的Carleson估计依然是正确的,但是$\frac{u}{v}$就要出大问题了,现在也不知道怎么办?也不知道是不是正确的。如果可以,那么FBP的一堆问题就可以作了,然而现在还是有很多的Gap.

 

第三章的ABP极值原理可以说是整本书关于正则性的理论基石,有了ABP就有了一切估计,正是基于这样的想法,很多人开始建立各种方程的ABP极值原理,想把Caffarelli的方法推广到其他方程上去。而ABP极值原理中最重要的信息隐藏在所谓的Contact Set之中。直观上来,对于边值非负的粘性上解,它的负部的最大值可以从方程上看出来,即$f\geq0$来控制,而$f<0$的部分对负部的最大值没有贡献,事实上,用来控制上解的负部的$f\geq0$的部分还可以缩小,即只需要接触集上的$f\geq0$的部分即可。这就是从几何上看。而整个定理的证明完全与基于凸分析中的边值非负的$C^{1,1}$ 凸函数的一个函数不等式。而上解正是通过凸包函数$\Gamma u$来建立估计式,最后用均值不等式来完成证明. 用到了一个非负定矩阵的性质, 若$A,B\geq0$, 则 $AB$的特征值均是非负实数,且$\frac{Tr(AB)}{n}\geq (det(A)det(B))^{\frac{1}{n}}$.  最后CC将ABP估计推广至任意有界区域,并在最后给了一般区域的极值原理,而这仅仅只需要用粘性解的定义就可以的出,可以避免使用ABP估计。

 

第四章,主要是基于ABP极值原理证明了Harnack Inequality。首先证明某种weak Harnack inequality,这里的叙述有点了以前De Giorgi 引理有些细微不同,其实如果把所谓的Doubling 性质加上去,那么他和之前的叙述是完全相同的。迭代后的到$L^\epsilon$估计,当然后来的$W^{2,\epsilon}$估计是同一个套路。然后对下解证明局部有界性,主要的想法是Turn the picture upside down! 结合$L^\epsilon$估计来推出矛盾。即总是可以证明如果有一点大,且该点的值大于某种自然的增长,那么一定可以在附近找到一个邻域使得里面还有比刚才的点还按照一定比例大的值,且领域的大小也有估计。这样用反证法就可以证明粘性解Scaling版本的局部一致有界性,这样就得到了Harnack不等式。然后就是标准的局部极值原理,弱Harnack不等式的证明。最后CC给出了边界Holder估计,以及推广。这在后面的紧方法中得到应用。

 

转载于:https://www.cnblogs.com/Analysis-PDE/p/10738500.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值