图论学习笔记

图论学习笔记

最近本蒟蒻在复习图论,发现自己已经基本把图论给忘了,所以就打算写这样一篇学习笔记,用来复习。

一、图的表示

1.邻接矩阵

用一个二维数组存边,\(map[i][j]=k\)表示点\(i\)到点\(j\)权值为\(k\)。添边、查边复杂度都是O(1),但占用空间太大。

模板:

int map[5000][5000],u,v,k,n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
    scanf("%d%d%d",&u,&v,&k);
    map[u][v]=k;
}

2.邻接表

\(n\)个数组存储每个节点发出的边,占用空间较小。

模板(vector方法):

#include<bits/stdc++.h>
using namespace std;
struct node{
    int v,k;
};
vector <node> head[5000];
int main(){
    int n,m,u,v,k;
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++){
        scanf("%d%d%d",&u,&v,&k);
        node a;
        a.v=v;a.k=k;
        head[u].push_back(a);
    }
    return 0;
}

二、拓扑排序

见这个博客

三、最小生成树

1.定义

一个无向连通图的最小生成树是该图的一个子图,且是一棵树,包含图中的所有顶点,且边权和最小。

2.Prim算法

设一个点集\(Q\)中仅包含初始节点(可以是任意节点),寻找一条边\((u,v)\),满足点\(u\)在集合\(Q\)中,点\(v\)不在集合\(Q\)中,且边权是所有这样的边中最小的,则这条边是最小生成树中的一条边,将点\(v\)也加入集合\(Q\)中,重复这样的操作,直到集合\(Q\)中包含所有的节点。那么找到的所有的边的集合就是这个图的最小生成树。

形象地说,就是在图上选一个点,然后在这个点的周围画一个圈。(如图)

enter image description here

然后在和圈相交的边里面选一条权值最小的(在图中即5与6之间的边),再把这个权值最小的边指向的节点也围到圈里。(如图)

enter image description here

然后再找与圈相交的边权最小的边,并把指向的节点圈到圈里面,以此类推,直到圈里包含了所有的节点,那么所有选过的边就是这棵树的最小生成树。

模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=1e9;
struct node{
    int v,k;    
};
vector <node> head[5000];

int p[5000],q[5000],n,m,tot=0;//p[i]表示节点i与点集q中一点相连的最短的边的权值(好绕啊),q[i]表示点i是否在点集q中 
void Prim(int root){
    p[root]=0;
    for(int i=1;i<=n;i++){
        int Min=INF,u;
        for(int j=1;j<=n;j++){
            if(Min>p[j]){
                Min=p[j];
                u=j;
            }
        }//找最短边,此处可以用堆优化
        
        tot+=p[u];
        q[u]=0;
        p[u]=INF;
        for(int j=0;j<head[u].size();j++){
            int v=head[u][j].v,k=head[u][j].k;
            if(q[v]&&p[v]>k){
                p[v]=k;
            }
        }//更新p数组 
    }
}

int main(){
    scanf("%d%d",&n,&m);
    int x,y,z;node a;
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        a.v=y;a.k=z;
        head[x].push_back(a);
        a.v=x;
        head[y].push_back(a);
    }
    for(int i=1;i<=n;i++){
        p[i]=INF;
        q[i]=1;
    }//初始化 
    Prim(1);
    printf("%d",tot);
    return 0;
}

3.Kruskal算法

首先将所有的节点放入不同的点集中,每个点集中只有一个节点。然后进行遍历,寻找一条边\((u,v)\),满足节点\(u\)与节点\(v\)不在同一个集合中,且是满足这个条件的边中权值最小的。那么这条边就是最小生成树中的一条边。将节点\(u\)与节点\(v\)所在的集合合并,再进行查找边与合并集合的操作,直到所有的点都在同一个集合中,那么找到的所有的边的集合就是这个图的最小生成树。

Kruskal算法可以利用并查集实现。

形象地说,就是在图中所有的节点周围都画一个圈(如图):

enter image description here

再在不被包含在一个圈里的的边(即与两个圈有交点的边)找到权值最小的边(在图中即5到6的边),把这两个圈合并。(如图)

enter image description here

然后重复这样的操作,直到所有的节点都在一个圈里,那么所有选过的边就是这棵树的最小生成树。

模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=1e9;
int n,m,pre[200001],tot=0,k=0;

struct node{
    int u,v,k;
}edge[200001];//edge数组存边 

//----------------------------------------并查集 
inline int find(int x){
    int y=x,j;
    while(x!=pre[x]){
        x=pre[x];
    }
    while(y!=x){
        j=pre[y];
        pre[y]=x;
        y=j;
    }
    return x;
}

inline void join(int x,int y){
    int pre_x=find(x),pre_y=find(y);
    if(pre_x!=pre_y){
        pre[pre_x]=pre_y;
    }
    return;
}
//----------------------------------------并查集 

bool cmp(node x,node y){
    return x.k<y.k;
}

void Kruskal(){
    sort(edge,edge+m,cmp);//将边按权值从小到大排序 
    int cnt=0;
    for(int i=0;i<m;i++){
        if(cnt==n-1){
            return;
        }//边够了 
        int u=edge[i].u,v=edge[i].v,k=edge[i].k;
        if(find(u)!=find(v)){//如果这条边可以选 
            join(u,v);
            cnt++;
            tot+=k;
        }
    }
}

int main(){
    scanf("%d%d",&n,&m);
    int x,y,z;
    node a;
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        edge[k].u=x;edge[k].v=y;edge[k].k=z;
        k++;
    }//edge数组存边 
    for(int i=1;i<=n;i++){
        pre[i]=i;
    }//并查集初始化 
    Kruskal();
    printf("%d",tot);
    return 0;
}

4.Prim算法与Kruskal算法的区别

算法PrimKruskal
时间复杂度\(O(v*log(v))\)\(O(e*log(e))\)
适用范围稠密图稀疏图

注:\(v\)为点数,\(e\)为边数。
Prim算法需要通过堆优化后复杂度才能达到\(O(v*log(v))\)

四、最短路

1.最短路问题

最短路问题(short-path problem)是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。基本内容是:若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。——百度百科

说人话就是在选一条连接两个点的路径,使这条路权值和最小。

2.Dijkstra算法

Dijkstra算法是一个求单源最短路径的算法,只适用于没有负权边的图。Dijkstra算法与Prim算法有些类似,都是设一个点集Q,最初只有一个节点,然后不断地添点,直到全部添加。

设点集Q,最初只包含起点\(u\)。设\(dis[i]\)\(u\)点到编号为\(i\)的节点的最短路,所有\(dis[i]\)初始化为INF,\(dis[u]\)初始化为0。首先寻找不在点集中且dis值最小的点\(x\)
,将点\(x\)加入Q中,并进行松弛操作,即对于所有从\(x\)点出发的边\((x,y)\)\(dis[y]=max(dis[y],dis[x]+w(x,y))\).然后再进行找点,加点与松弛的操作,直到所有点都被加入Q中为止。那么最短路就求出来了。

原理是由于图中没有负边,所以如果\(dis[i]\)为图中最小的,那么它就不可能再被更新,所以就可以被确定,即被加入点集Q中。

如果需要记录路径,那么就建立一个\(father[n]\)数组,\(father[i]\)表示\(i\)节点的上一个节点。每次进行松弛操作时,如果\(dis[i]>dis[j]+w(i,j)\),那么就将\(father[i]\)赋值为\(j\)即可。

与Prim算法相似,Dijkstra算法也可以在找\(dis\)值最大的节点时利用堆进行优化。

模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=1e9;
struct edge{
    int v,k;
};
vector <edge> head[100001];

int dis[100001],q[100001];

struct node{
    int dis,u;//u:节点编号 dis:dis值 
    bool operator<(const node& a) const{//运算符重载,以使用STL优先队列 
        return dis>a.dis;
    }
}; 

int n,m;
void Dijkstra(int s){
    priority_queue <node> que;//堆优化 
    bool vis[100001]={0};//是否被访问过 
    for(int i=1;i<=n;i++){
        dis[i]=INF;
    }
    dis[s]=0;
    que.push((node){0,s});
    while(!que.empty()){
        int u=que.top().u;
        que.pop();
        if(vis[u]){//如果已经被访问过了,那么这个节点的dis值就是在松弛操作之前的dis值了,直接删除即可。
        //由于松弛后的dis值一定小于松弛前的dis值,所以不用担心出错。 
            continue;
        }
        vis[u]=1;
        q[u]=1;
        for(int i=0;i<head[u].size();i++){
            int v=head[u][i].v,k=head[u][i].k;
            if(!q[v]&&dis[v]>dis[u]+k){//松弛操作 
                dis[v]=dis[u]+k;
                que.push((node){dis[v],v});
            }
        }
    }
}

int main(){
    int u,v,k,s;
    scanf("%d%d%d",&n,&m,&s);
    
    for(int i=0;i<m;i++){
        scanf("%d%d%d",&u,&v,&k);
        edge a;
        a.v=v;a.k=k;
        head[u].push_back(a);
    }
    Dijkstra(s);
    for(int i=1;i<=n;i++){
        printf("%d ",dis[i]);
    }
    return 0;
}

3.Bellman-Ford算法

Bellman-Ford算法可以求有负权边的图的单源最短路径。算法是对\(dis\)数组进行\(n- 1\)(n为节点个数)轮松弛操作。

原理是最短路一定经过\(n-1\)个节点(起点不算),即有\(n-1\)\(dis\)值需要更新。每更新一个节点的\(dis\)值,其他的节点也可能会受到影响。故进行\(n-1\)轮松弛操作后可以保证求出最短路。

模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=1e9;
struct node{
    int u,v,k;
};
vector <node> edge;

int dis[100001];

int n,m;
void Bellman_Ford(int s){
    for(int i=1;i<=n;i++){
        dis[i]=INF;
    }
    dis[s]=0;
    for(int i=0;i<n-1;i++){
        for(int j=0;j<m;j++){
            int u=edge[j].u,v=edge[j].v,k=edge[j].k;//遍历每一条边,进行松弛 
            if(dis[v]>dis[u]+k){
                dis[v]=dis[u]+k;
            }
        }
    }
}

int main(){
    int u,v,k,s;
    scanf("%d%d%d",&n,&m,&s);
    
    for(int i=0;i<m;i++){
        scanf("%d%d%d",&u,&v,&k);
        edge.push_back((node){u,v,k});//edge数组存边 
    }
    Bellman_Ford(s);
    for(int i=1;i<=n;i++){
        printf("%d ",dis[i]);
    }
    return 0;
}

另外值得一提的是Bellman-Ford算法还可以判断图中是否存在负环(即权值和为负的环),只需要在进行n-1次操作后在进行一轮松弛操作,如果还有节点的\(dis\)值被更新,说明图中存在负环。

4.SPFA算法

它不是死了吗
Shortest Path Fast Algorithm 算法是Bellman-Ford算法的队列优化版本。

我们可以发现,如果一个点的\(dis\)值更新了 ,那么与这个节点相邻的节点的\(dis\)值都可能会受到影响。所以我们可以建一个队列,存放等待更新的节点,并每次对队首的节点进行松弛操作并把所有与队首相连的节点入队,并把队首pop出去,重复进行这样的操作,直到队列为空。

模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=10e9;
int n,m,dis[100001];
struct node{
    int v,k;
};
vector<node>head[100001];

void SPFA(int s){
    bool vis[100001];//vis数组记录是否在队列中 
    queue<int> que;
    que.push(s);
    for(int i=0;i<=n;i++){
        dis[i]=INF;
        vis[i]=0;
    }
    vis[s]=1;
    dis[s]=0;
    
    while(!que.empty()){
        int num=que.front();
        que.pop();
        vis[num]=0;
        for(int i=0;i<head[num].size();i++){//对队首进行松弛操作 
            if(dis[head[num][i].v]>dis[num]+head[num][i].k){
                dis[head[num][i].v]=dis[num]+head[num][i].k;
                if(!vis[head[num][i].v]){//如果队首更新,就把与队首相邻的节点入队 
                    que.push(head[num][i].v);
                    vis[head[num][i].v]=1;
                }
            }
        }
    }
}

int main(){
    int s,x,y,z;
    node a;
    scanf("%d%d%d",&n,&m,&s);
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        a.v=y;a.k=z;
        head[x].push_back(a);
    }
    SPFA(s);
    for(int i=1;i<=n;i++){
        printf("%d ",dis[i]);
    }
    return 0;
}

5.Floyd-Warshall算法

Floyed-Warshall算法可以求出多源最短路径,即求出任意两点之间的最短路径。Floyd-Warshall算法的本质是动态规划。设\(dis_{k}[i][j]\)表示节点\(i\)和节点\(j\)之间的一条仅经过编号最大不超过\(k\)的节点最短路径的长度,那么显然\(dis_{0}[i][j]=w(i,j)\),因为\(k\)=0,所以路径中不能经过其他节点。

那么如何从\(dis_{k-1}[i][j]\)推出\(dis_{k}[i][j]\)呢?我们需要分两种情况:

  1. \(dis_{k}[i][j]\)是一条不经过\(k\)节点的路径的长度,那么\(dis_{k}[i][j]=dis_{k-1}[i][j]\).
  2. \(dis_{k}[i][j]\)是一条经过\(i\)节点的路径的长度,那么\(dis_{k}[i][j]=dis_{k-1}[i][k]+dis_{i-1}[k][j]\) (将这条路径分为两部分)

由此我们可以得到状态转移方程:
\(dis_{k}[i][j]=max(dis_{k-1}[i][j],dis_{k-1}[i][k]+dis_{k-1}[k][j])\)

模板:

#include<bits/stdc++.h>
using namespace std;
const int INF=1e9;
int n,dis[1001][1001];

void Floyd_Warshall(){
    for(int k=1;k<=n;k++){//循环k的值 
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(dis[i][k]!=INF&&dis[k][j]!=INF&&dis[i][k]+dis[k][j]<dis[i][j]){//状态转移 
                    dis[i][j]=dis[i][k]+dis[k][j];
                }
            }
        }
    }
}

int main(){
    scanf("%d",&n);
    int x,y,z;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            scanf("%d",&dis[i][j]);
            if(dis[i][j]==-1){
                dis[i][j]=INF;
            }
        }
    }//邻接矩阵存图 
    
    Floyd_Warshall();
    
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(dis[i][j]==INF)
                printf("-1 ");
            else
                printf("%d ",dis[i][j]);
        }
        printf("\n");
    }
    return 0;
}

未完待更......

转载于:https://www.cnblogs.com/juruoyqr/p/11286320.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值