并查集

首先给出一个简易的并查集:

public class UnionFind {
	static int[] f;

	public UnionFind(int n) {
		f = new int[n];
		for (int i = 0; i < f.length; i++) {
			f[i] = i;
		}
	}

	static int find(int x) {
		if (f[x] == x)
			return x;
		return f[x] = find(f[x]);
	}

	static void union(int x, int y) {
		int a = find(x);
		int b = find(y);
		if (a != b) {
			f[a] = b;
		}
	}
}

接下来给出一个完整的、时间效率很高的并查集。
昨天晚上看书的时候看见了并查集的实现,与之前见过的递归写法不同,在这里记录一下。
出处是《算法》第四版的配套网站。

/**
 * The {@code UF} class represents a <em>union–find data type</em> (also known
 * as the <em>disjoint-sets data type</em>). It supports the classic
 * <em>union</em> and <em>find</em> operations, along with a <em>count</em>
 * operation that returns the total number of sets.
 * <p>
 * The union–find data type models a collection of sets containing <em>n</em>
 * elements, with each element in exactly one set. The elements are named 0
 * through <em>n</em>–1. Initially, there are <em>n</em> sets, with each element
 * in its own set. The <em>canonical element</em> of a set (also known as the
 * <em>root</em>, <em>identifier</em>, <em>leader</em>, or <em>set
 * representative</em>) is one distinguished element in the set. Here is a
 * summary of the operations:
 * <ul>
 * <li><em>find</em>(<em>p</em>) returns the canonical element of the set
 * containing <em>p</em>. The <em>find</em> operation returns the same value for
 * two elements if and only if they are in the same set.
 * <li><em>union</em>(<em>p</em>, <em>q</em>) merges the set containing element
 * <em>p</em> with the set containing element <em>q</em>. That is, if <em>p</em>
 * and <em>q</em> are in different sets, replace these two sets with a new set
 * that is the union of the two.
 * <li><em>count</em>() returns the number of sets.
 * </ul>
 * <p>
 * The canonical element of a set can change only when the set itself changes
 * during a call to <em>union</em>&mdash;it cannot change during a call to
 * either <em>find</em> or <em>count</em>.
 * <p>
 * This implementation uses <em>weighted quick union by rank</em> with <em>path
 * compression by halving</em>. The constructor takes &Theta;(<em>n</em>) time,
 * where <em>n</em> is the number of elements. The <em>union</em> and
 * <em>find</em> operations take &Theta;(log <em>n</em>) time in the worst case.
 * The <em>count</em> operation takes &Theta;(1) time. Moreover, starting from
 * an empty data structure with <em>n</em> sites, any intermixed sequence of
 * <em>m</em> <em>union</em> and <em>find</em> operations takes
 * <em>O</em>(<em>m</em> &alpha;(<em>n</em>)) time, where &alpha;(<em>n</em>) is
 * the inverse of <a href =
 * "https://en.wikipedia.org/wiki/Ackermann_function#Inverse">Ackermann's
 * function</a>.
 * <p>
 * For alternative implementations of the same API, see {@link QuickUnionUF},
 * {@link QuickFindUF}, and {@link WeightedQuickUnionUF}. For additional
 * documentation, see <a href="https://algs4.cs.princeton.edu/15uf">Section
 * 1.5</a> of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin
 * Wayne.
 *
 * @author Robert Sedgewick
 * @author Kevin Wayne
 */

class UF {

	private int[] parent; // parent[i] = parent of i
	private byte[] rank; // rank[i] = rank of subtree rooted at i (never more than 31)
	private int count; // number of components

	/**
	 * Initializes an empty union-find data structure with {@code n} elements
	 * {@code 0} through {@code n-1}. Initially, each elements is in its own set.
	 *
	 * @param n
	 *            the number of elements
	 * @throws IllegalArgumentException
	 *             if {@code n < 0}
	 */
	public UF(int n) {
		if (n < 0)
			throw new IllegalArgumentException();
		count = n;
		parent = new int[n];
		rank = new byte[n];
		for (int i = 0; i < n; i++) {
			parent[i] = i;
			rank[i] = 0;
		}
	}

	/**
	 * Returns the canonical element of the set containing element {@code p}.
	 *
	 * @param p
	 *            an element
	 * @return the canonical element of the set containing {@code p}
	 * @throws IllegalArgumentException
	 *             unless {@code 0 <= p < n}
	 */
	 // 这里通过循环,使得p及其所有之前是p的parent的变量与p在树的同一层
	public int find(int p) {
		validate(p);
		while (p != parent[p]) {
			parent[p] = parent[parent[p]]; // path compression by halving
			p = parent[p];
		}
		return p;
	}

	/**
	 * Returns the number of sets.
	 *
	 * @return the number of sets (between {@code 1} and {@code n})
	 */
	public int count() {
		return count;
	}

	/**
	 * Returns true if the two elements are in the same set.
	 *
	 * @param p
	 *            one element
	 * @param q
	 *            the other element
	 * @return {@code true} if {@code p} and {@code q} are in the same set;
	 *         {@code false} otherwise
	 * @throws IllegalArgumentException
	 *             unless both {@code 0 <= p < n} and {@code 0 <= q < n}
	 * @deprecated Replace with two calls to {@link #find(int)}.
	 */
	@Deprecated
	public boolean connected(int p, int q) {
		return find(p) == find(q);
	}

	/**
	 * Merges the set containing element {@code p} with the the set containing
	 * element {@code q}.
	 *
	 * @param p
	 *            one element
	 * @param q
	 *            the other element
	 * @throws IllegalArgumentException
	 *             unless both {@code 0 <= p < n} and {@code 0 <= q < n}
	 */
	public void union(int p, int q) {
		// union之前先find p和q使得两者均在各自树的第一层
		// 这样之后如果再find p或者q,就会大幅减少时间
		int rootP = find(p);
		int rootQ = find(q);
		if (rootP == rootQ)
			return;

		// make root of smaller rank point to root of larger rank
		if (rank[rootP] < rank[rootQ])
			parent[rootP] = rootQ;
		else if (rank[rootP] > rank[rootQ])
			parent[rootQ] = rootP;
		else {
			// 这一步把Q挂在P上,使得P是Q的父亲结点,两个深度相同的树挂在一起,其中一个根结点是另一个树的根节点,挂起来之后的树的深度显然要自增。
			parent[rootQ] = rootP;
			rank[rootP]++;
		}
		count--;
	}

	// validate that p is a valid index
	private void validate(int p) {
		int n = parent.length;
		if (p < 0 || p >= n) {
			throw new IllegalArgumentException("index " + p + " is not between 0 and " + (n - 1));
		}
	}

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值