深度学习在线更新、增量更新(待更)

在很多机器学习的问题上,都会涉及到如果在线更新模型,离线训练好的数据,需要利用线上的数据补充更新模型,使得模型能够更好地适应各种情况。
那么在神经网络中如何在线更新模型呢?

常见的就是retrain和fine tune
retrain其实差不多就是用新的数据继续训练模型,虽然可以比较快的收敛,但也需要用所有的数据,也是比较慢的
fine tune只是微调最后一层,可能会快一些,但可能不能很好的适配新的数据。

可以这两个策略综合使用,那么就会有fine tune、 retrain、 trian三种。

但是这里都基本上是需要用所有数据的,有没有办法只用新增的数据更新模型呢?
阅读更多

扫码向博主提问

keep_forward

非学,无以致疑;非问,无以广识
去开通我的Chat快问
版权声明: https://blog.csdn.net/b876144622/article/details/79962710
个人分类: deeplearning
上一篇提前预测类问题的思路
下一篇tensorflow 恢复部分参数、加载指定参数
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭