元编程奶
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
52、网络物理系统的安全与弹性策略及机器学习应用
本文探讨了网络物理系统(CPS)的安全与弹性策略,重点分析了基于周期性和物理惯性的脆弱性容忍技术,如BFT++、YOLO和软件脆性方法,并比较了各类技术的优劣。同时,文章介绍了机器学习在CPS中的应用,包括机器人控制、事件关联、异常检测以及基于强化学习的容错控制策略,提出了利用ML作为代理模型增强系统鲁棒性的潜力。最后总结了不同方法的适用场景,强调需结合实际需求选择合适的技术组合以提升CPS的安全性与可靠性。原创 2025-10-06 06:33:22 · 35 阅读 · 0 评论 -
51、网络物理系统安全防御策略解析
本文深入解析了网络物理系统(CPS)的多种安全防御策略,包括基于操作模式划分的白名单与操作分段防御、结合网络与物理层的参考模型安全机制,以及以软件无漏洞为目标的漏洞预防方法。重点探讨了操作分段在船舶等场景中的应用、软硬件冗余与无冗余故障检测恢复(FDI/FR)技术、二进制重写与安全多样化方案,并详细介绍了形式化方法在seL4微内核中的成功实践及其局限性。文章最后对比了各类策略的优缺点,展望了多策略融合与形式化方法落地二进制层面的未来方向,为构建高保证CPS系统提供了理论基础与技术路径。原创 2025-10-05 10:27:37 · 22 阅读 · 0 评论 -
50、网络物理系统安全、弹性与人工智能的经验教训与未来方向
本文探讨了网络物理系统(CPS)在现代关键基础设施中的核心作用及其面临的安全与弹性挑战。文章指出,传统网络安全方法如网络分段不足以应对复杂攻击,需从物理与网络双重视角出发,采用整体性防护策略。通过分析CPS中物理与网络组件的响应时间差异,提出利用物理惯性与周期性特征实现弹性的新设计空间。重点讨论了控制器被劫持的攻击路径及防御机制,强调多样化、多因素认证和BFT++等技术的重要性。展望未来,文章倡导推进多尺度建模、AI/ML融合、自适应控制以及跨领域协作与标准制定,以构建更安全、更具弹性的CPS体系。原创 2025-10-04 11:37:33 · 35 阅读 · 0 评论 -
49、联邦学习安全问题解析与防御策略
本文系统分析了联邦学习中的主要安全威胁,包括角度偏差、幅度偏差和轻微偏差等攻击类型,深入探讨了聚类、裁剪、相似度检查、噪声添加和鲁棒聚合等常见防御方法的原理与优缺点。同时介绍了协议级、服务器级和客户端级的先进后门防御技术,并对比了不同防御策略的特点。最后提出了未来研究方向,涵盖拓展应用领域、多域模型安全、隐私与安全的平衡、垂直联邦学习及客户端级防御的加强,旨在推动联邦学习在复杂场景下的安全发展。原创 2025-10-03 10:22:31 · 30 阅读 · 0 评论 -
48、联邦学习安全问题的全面解析
本文全面解析了联邦学习中的安全与隐私问题,涵盖联邦学习的基本流程、影响因素(如IID/Non-IID数据分布、横向与纵向联邦学习),并详细分析了常见的威胁模型、攻击类型(包括拜占庭攻击、后门攻击、数据与模型投毒)及其对全局模型的影响,重点探讨了角度偏差和幅度偏差的表现与成因。文章还介绍了针对这些攻击的防御思路与操作步骤,如异常检测、数据验证和改进的模型聚合方法,最后总结了联邦学习面临的安全挑战及未来防御策略的发展方向。原创 2025-10-02 09:51:46 · 26 阅读 · 0 评论 -
47、隐私的代价:联邦学习安全问题的全面分析
本文深入探讨了联邦学习的原理、应用场景及其在隐私保护方面的优势,同时分析了其面临的安全挑战。文章还介绍了基于图像的恶意软件检测技术,讨论了对抗攻击的常见方式及其影响,并提出了提高检测系统鲁棒性的有效策略。通过结合联邦学习与网络安全技术,为构建更安全、可靠的智能系统提供了思路和方向。原创 2025-10-01 11:51:56 · 29 阅读 · 0 评论 -
46、基于图像的恶意软件检测对抗攻击的鲁棒性研究
本文研究基于卷积神经网络(CNN)的图像基恶意软件检测方法在对抗攻击下的鲁棒性。通过将恶意软件二进制文件转换为灰度图像进行分类,评估其在黑盒与白盒攻击场景下的性能与抗干扰能力。实验结果表明,该方法在多数攻击下优于MalConv,尤其在随机和良性字节追加攻击中逃避率显著更低,展现出较强的稳定性。同时,分析了图像特征的稳定性、对抗攻击的局限性,并探讨了实际应用中的数据更新、资源消耗及误报问题。未来方向包括多模态融合、自适应防御与可解释性提升。原创 2025-09-30 09:44:55 · 22 阅读 · 0 评论 -
45、基于图像的恶意软件检测对抗攻击的鲁棒性研究
本研究提出并构建了一个轻量级的基于卷积神经网络(CNN)的图像恶意软件分类器,通过将恶意软件二进制文件转换为灰度图像进行分类,并系统评估其在白盒和黑盒设置下对抗攻击的鲁棒性。研究采用了四种攻击方法:暴力随机字节追加、暴力良性字节追加、随机字节FGSM和良性字节FGSM,在保留恶意软件功能的前提下测试分类器的防御能力。实验结果表明,该基于图像的方法相比MalConv在多种对抗攻击下具有更强的鲁棒性,平均逃避率显著降低,部分场景下可低至5%。此外,该分类器具备轻量级、高准确率和对模型中毒一定免疫力的优点,具备良原创 2025-09-29 15:01:43 · 21 阅读 · 0 评论 -
44、增强现实应用安全与图像恶意软件检测的多面探讨
本文深入探讨了增强现实(AR)应用中的内容共享安全与图像恶意软件检测的前沿挑战。通过分析ShareAR系统、AI在AR中的潜在风险与防御机制,揭示了AI驱动的恶意内容识别与用户认证方案的可行性与伦理考量。同时,研究评估了基于图像的恶意软件检测模型对对抗攻击的鲁棒性,指出其在保留恶意功能前提下的防御难点。文章强调AI与机器学习在提升AR安全和恶意软件识别中的巨大潜力,同时也警示数据隐私、模型可转移性攻击等风险,呼吁在技术创新中平衡安全性、隐私保护与伦理责任。原创 2025-09-28 11:34:31 · 24 阅读 · 0 评论 -
43、增强现实应用安全保障全解析
本文深入探讨了增强现实(AR)应用面临的安全挑战,涵盖欺诈、隐形窃听、身体伤害操纵、人体操纵杆攻击等多种独特威胁,并系统分析了AI和ML在AR安全中的关键作用,如异常检测与威胁预测。通过案例研究揭示了移动场景防御策略及感知操纵攻击的影响,介绍了ShareAR多用户安全共享机制。文章最后总结现有防护措施,并展望未来AR安全保障的发展方向,强调技术优化、机制完善与用户教育的协同推进。原创 2025-09-27 15:19:59 · 26 阅读 · 0 评论 -
42、增强现实应用程序的安全保障
随着增强现实(AR)技术在教育、医疗、娱乐等领域的广泛应用,其背后的安全隐患也日益突出。本文深入探讨了AR应用面临的主要安全威胁,包括数据隐私泄露、传感器入侵、网络攻击及设备物理漏洞,并分析了人工智能与机器学习在应对这些挑战中的关键作用。通过构建涵盖数据保护、传感器安全、网络安全和物理保障的综合防护体系,结合AI驱动的智能防御策略,旨在为AR技术的安全发展提供系统性解决方案,确保用户在享受沉浸式体验的同时免受潜在风险侵害。原创 2025-09-26 10:27:50 · 16 阅读 · 0 评论 -
41、增强现实系统的安全与隐私:挑战与应对策略
本文探讨了增强现实(AR)系统在安全与隐私方面面临的多重挑战,重点分析了基于眼动的用户识别风险、AR输出管理缺失引发的安全隐患以及输入多维度的安全威胁。文章综述了当前针对眼动隐私泄露、虚拟对象渲染失控等问题的防御策略,如差分隐私、强化学习优化和Arya输出控制模型,并指出现有研究在通用性与全面性上的局限。最后,提出了未来研究方向,呼吁学术界、产业界和政府协同推进AR系统的安全架构建设,构建可信的增强现实环境。原创 2025-09-25 10:22:30 · 32 阅读 · 0 评论 -
40、增强现实系统的安全与隐私保护
本文探讨了增强现实(AR)系统的安全与隐私挑战,重点分析了运动传感器面临的声学噪声和频率调制攻击及其防御措施,包括物理保护、传感器融合与异常检测。文章还讨论了立体视觉、结构光和飞行时间(ToF)等深度传感技术的安全漏洞,特别是LiDAR的选择模式注入攻击,并介绍检测、缓解与随机化三类防御方案。在隐私方面,阐述了输入数据带来的旁观者隐私、位置隐私和凝视隐私问题,分别提出了显式与隐式解决方案及基于网络流量的位置推断攻击防范策略,强调AR系统需在安全性与可用性之间取得平衡。原创 2025-09-24 09:43:30 · 29 阅读 · 0 评论 -
39、增强现实系统的传感器与安全隐私问题解析
本文深入探讨了增强现实(AR)系统的传感器组成与信号处理流程,分析了AR系统面临的主要安全与隐私威胁,重点解析了音频和运动输入的安全风险及其防御机制。文章详细介绍了信号失真检测、身份验证、活体检测、多传感器数据融合和信号阈值监测等关键技术,并提出了相应的防御解决方案,旨在为AR系统的安全设计与应用提供参考。原创 2025-09-23 15:01:51 · 18 阅读 · 0 评论 -
38、有限防御资源下的对抗在线强化学习与增强现实系统安全隐私
本文探讨了在有限防御资源下的对抗在线强化学习理论及其在增强现实(AR)系统安全与隐私保护中的应用。通过公式推导分析了SEEDS-UT算法的遗憾上界,揭示了其在动态环境中的性能边界。同时,文章详细介绍了AR系统的架构与关键传感器技术,重点剖析了输入/输出安全与隐私问题,并提出了未来研究方向,包括提升传感器抗干扰能力、采用差分隐私技术和加强数据加密机制,为构建安全可信的AR系统提供了理论支持与实践路径。原创 2025-09-22 11:51:07 · 13 阅读 · 0 评论 -
37、对抗性在线强化学习中的切换成本与未知转移函数处理
本文研究了对抗性在线强化学习中防御者资源有限时的策略优化问题,重点分析了SEEDS算法在已知转移函数下的损失遗憾与切换成本权衡,并提出了适用于转移函数未知情况的SEEDS-UT算法。通过引入损失估计改进、转移函数集合估计和占用度量更新等新组件,SEEDS-UT实现了接近最优的性能表现。文章提供了详细的理论证明,展示了算法在不同场景下的遗憾上界,并对未来研究方向如更一般的MDP设置和动态遗憾进行了展望。原创 2025-09-21 16:23:14 · 18 阅读 · 0 评论 -
36、对抗性在线强化学习中的关键技术与算法分析
本文深入探讨了考虑切换成本的对抗性在线强化学习中的关键问题,包括基本概念、理论遗憾下限以及高效算法设计。文章首先定义了占用度量与遗憾,并通过定理揭示了在存在切换成本时,任何算法的遗憾下界为 \tilde{\Omega}(T^{2/3}),显著高于传统 \tilde{O}(\sqrt{T}) 的情况,凸显其根本挑战。随后提出SEEDS算法,在已知转移函数时可实现 \tilde{O}(T^{2/3}) 遗憾,达到下限阶数最优。此外,文章分析了损失遗憾与策略切换次数之间的权衡关系,并讨论了转移函数未知时的挑战与未原创 2025-09-20 14:21:00 · 29 阅读 · 0 评论 -
35、具有切换成本的对抗性在线强化学习
本文探讨了具有切换成本的对抗性在线强化学习问题,从多臂老虎机到 episodic MDP 框架下的强化学习,分析了切换成本对算法性能的影响。介绍了EpExp3算法及其在不同资源下的遗憾值表现,并讨论了对抗性强化学习中的遗憾值下界、损失与切换成本之间的权衡。针对已知和未知转移函数的情况,提出了两种切换-减少算法,均能有效匹配理论下界或在其小因子范围内。最后展望了该领域在复杂环境建模与实际应用中的未来发展方向。原创 2025-09-19 10:51:16 · 33 阅读 · 0 评论 -
34、众包定位与对抗在线强化学习技术解析
本文深入解析了众包定位与对抗在线强化学习技术的关键问题与最新进展。在众包定位方面,探讨了位置隐私保护、对抗攻击防御、泛化能力提升及定向发射机定位等挑战,并比较了传统噪声添加与伪位置调整等解决方案。在对抗在线强化学习领域,分析了无切换成本与带切换成本的算法差异,强调了策略切换在实际应用中的资源限制影响,并展望了复杂环境适应性、多智能体协作和实时性要求等未来研究方向。通过流程图和对比表格,系统展示了两类技术的工作流程与核心挑战,为相关领域的研究与应用提供了全面的技术参考。原创 2025-09-18 16:32:29 · 25 阅读 · 0 评论 -
33、众包定位频谱违规者:对抗攻击与防御策略
本文探讨了在众包测量定位系统中对抗攻击的防御策略,重点分析了识别和移除对抗性传感器的方法以及提升定位鲁棒性的技术。通过统计分析、异常检测、基于物理的检测和群体验证等手段识别恶意传感器,并采用基于定位误差变化的异常值排除方法进行剔除。引入对抗训练增强模型对扰动的鲁棒性,案例研究表明其对多种攻击(如简单随机攻击、FGSM攻击、Hi-Lo攻击)具有显著防御效果,但最坏情况攻击仍具挑战。研究还讨论了不同传感器密度下攻击的影响,并提出了数据加密、匿名化处理和差分隐私等位置隐私保护策略,为构建安全可靠的众包定位系统提供原创 2025-09-17 14:50:26 · 19 阅读 · 0 评论 -
32、利用众包定位频谱违规者
本文探讨了利用众包传感器信息定位频谱违规发射机的多种方法,包括SPLOT、LLOCUS、TL;DL和CUTL,分析了它们的原理、优缺点及在不同场景下的性能表现。同时,文章深入研究了针对这些定位方法的对抗性攻击类型,如天真攻击、知情攻击和全知攻击,并讨论了各类攻击对定位系统的影响。最后,提出了未来在定位算法改进、对抗攻击防御以及实际系统优化方面的发展方向,旨在构建更安全、准确的众包频谱监管体系。原创 2025-09-16 15:11:13 · 24 阅读 · 0 评论 -
31、利用众包定位频谱违规者
本文探讨了利用众包技术定位频谱违规者的挑战与解决方案。随着软件定义无线电的普及,非法射频传输日益严重,传统密集传感器网络因成本高难以部署。众包通过移动设备收集大量射频数据,提升覆盖范围并降低成本。文章综述了基于接收信号强度(RSS)的多种定位方法:基于物理模型的方法依赖传播特性,适用于环境信息充分的场景;基于指纹的方法利用历史数据匹配位置,适应复杂环境但需大量训练;基于卷积神经网络(CNN)的方法将传感器数据编码为图像,实现端到端定位,并可融合环境特征提升精度。文中介绍了SPLOT、LLOCUS、TL;DL原创 2025-09-15 10:25:06 · 27 阅读 · 0 评论 -
30、无线定位中的对抗机器学习
本文探讨了对抗机器学习在无线定位系统中的应用,分析了FGSM、FGM、PGD和MIM等经典对抗攻击方法的原理与特点,并比较了它们在不同场景下的攻击效果、计算效率和可转移性。研究覆盖5G和Wi-Fi(包括RSS与CSI)定位系统,在白盒与黑盒攻击条件下评估模型鲁棒性。实验表明,对抗攻击可显著降低定位精度,而对抗训练虽能提升防御能力,但仍无法完全恢复性能。文章强调了开发更先进攻防技术的重要性,以保障未来无线定位系统的安全性与可靠性。原创 2025-09-14 12:00:42 · 22 阅读 · 0 评论 -
29、无线定位中的对抗机器学习技术解析
本文综述了无线定位系统中基于机器学习技术的应用及其面临的安全挑战,重点分析了对抗机器学习中的后门攻击与对抗攻击原理及实验案例。针对Wi-Fi、5G和语音定位系统,探讨了利用RSS和CSI等信号特征构建深度学习模型的定位方法,并揭示了其在部署过程中可能遭受的攻击方式。文章进一步提出了包括数据增强、模型加固和检测机制在内的多种防御策略,以提升系统的鲁棒性与安全性,最后展望了未来无线定位系统在安全防护方面的研究方向。原创 2025-09-13 14:02:39 · 26 阅读 · 0 评论 -
28、毫米波人体活动识别系统对抗攻击研究
本文研究了毫米波人体活动识别(HAR)系统的对抗攻击问题,重点分析了无目标、有目标和通用攻击下扰动幅度的影响,通过L₂范数评估对抗样本的隐蔽性与有效性。研究还探讨了黑盒攻击场景下的威胁模型,采用知识蒸馏和生成对抗网络提升替代模型性能,验证了在数据受限条件下仍可实现较高攻击成功率。实验结果表明,所提出的攻击方法在体素和热图数据集上均有效,且扰动幅度远低于设定阈值。最后总结了研究贡献并指出未来应深入探索物理对抗攻击,以增强HAR系统安全性。原创 2025-09-12 10:11:34 · 13 阅读 · 0 评论 -
27、毫米波人体活动识别的通用目标对抗攻击
本文研究了毫米波人体活动识别(HAR)系统中的通用目标对抗攻击方法,重点探讨了黑盒和白盒攻击场景下的实现策略。在黑盒攻击中,针对训练数据完全或部分可访问的情况,分别采用知识蒸馏(KD)和生成对抗网络(GAN)结合KD的方法训练替代模型,利用对抗样本的可迁移性对受害者模型发起攻击。在白盒场景下,实现了无目标、目标和通用对抗攻击,实验结果显示在体素基和热图基数据集上均取得高攻击成功率。通用攻击在保证较高成功率的同时显著提升了攻击效率,适用于实时环境。通过性能评估与对比分析,验证了所提方法的有效性和实用性,揭示了原创 2025-09-11 14:32:25 · 20 阅读 · 0 评论 -
26、基于毫米波的人类活动识别通用目标对抗攻击解析
本文深入探讨了针对毫米波(mmWave)人类活动识别(HAR)系统的对抗攻击方法,涵盖无目标攻击、目标攻击和通用攻击等多种类型。文章详细解析了白盒与黑盒攻击场景下的攻击设计,提出了基于梯度优化的对抗损失与扰动损失函数,并引入裁剪、离散化及自然风格优化策略以提升攻击的隐蔽性与有效性。特别地,设计了一种实用的通用目标攻击方法,通过离线生成通用扰动实现对同类活动样本的高效在线攻击,显著提升了时间受限场景下的攻击可行性。研究为评估HAR系统安全性提供了重要参考。原创 2025-09-10 13:39:01 · 37 阅读 · 0 评论 -
25、基于毫米波的人类活动识别系统的通用目标对抗攻击研究
本文研究了基于毫米波的人类活动识别(HAR)系统的安全性,重点探讨了针对此类系统的通用目标对抗攻击方法。文章分析了现有HAR系统的技术背景,包括无线信号传感与深度学习模型应用,并构建了基于体素和热图的两类典型毫米波HAR模型作为受害者模型。在白盒和黑盒威胁模型下,设计了无目标、目标及通用对抗攻击方法,采用优化扰动、离散化处理、迭代构造扰动、知识蒸馏与生成对抗网络等技术提升攻击效果。实验结果表明,所提攻击方法在多种模型上均具有较高的成功率,揭示了当前毫米波HAR系统面临的安全隐患。最后,文章展望了未来在攻击隐原创 2025-09-09 09:11:18 · 28 阅读 · 0 评论 -
24、深度学习助力无线通信安全与毫米波人体活动识别攻击研究
本文探讨了深度学习在无线通信安全与毫米波人体活动识别中的应用。一方面,DEFORM系统通过波束形成技术在AWGN和瑞利信道中实现显著增益,并在LoRa和ZigBee中继场景中表现出优越的性能;另一方面,针对基于毫米波的人体活动识别(HAR)系统,研究揭示了其深度学习模型易受白盒与黑盒对抗攻击的安全隐患。研究设计了有目标、无目标及通用对抗攻击,并利用知识蒸馏实现黑盒目标攻击,凸显了系统安全性挑战。未来需进一步优化通信鲁棒性并加强对抗防御机制。原创 2025-09-08 09:32:49 · 12 阅读 · 0 评论 -
23、无线通信抗干扰与波束赋形技术解析
本文深入解析了无线通信中的抗干扰技术与基于深度学习的通用波束赋形技术。通过干扰检测、参数估计与实验分析,展示了抗干扰技术在不同干扰源和多径环境下的鲁棒性;同时介绍了DEFORM系统如何利用CNN实现高效的振幅与相位估计,提升信号质量。文章对比了两种技术的优势,分析了其在军事通信、物联网和智能交通等场景的应用,并展望了未来融合化、智能化的发展趋势,提供了实际应用中的操作建议。原创 2025-09-07 16:43:05 · 21 阅读 · 0 评论 -
22、基于深度学习的无线通信抗干扰与识别技术
本文介绍了一种基于深度学习的无线通信抗干扰与识别技术。首先提出了WRIST系统,结合YOLO算法与射频特征优化,实现100 MHz宽带频谱下的实时射频信号分类与频谱-时间定位,并发布SPREAD数据集以支持相关研究。其次,提出JaX干扰消除方案,利用双天线接收结构和多功能卷积神经网络,实现对抗性干扰的检测与消除。实验表明,该系统在多种真实环境中均具备高精度与鲁棒性,为未来无线通信安全提供了有效解决方案。原创 2025-09-06 09:21:19 · 33 阅读 · 0 评论 -
21、基于深度学习的软件定义网络入侵检测与无线通信安全
本文探讨了深度学习在软件定义网络入侵检测与无线通信安全中的关键应用。面对日益复杂的网络攻击和无线干扰威胁,传统方法难以应对频谱拥挤与智能干扰等挑战。文章介绍了三种基于深度学习的创新系统:WRIST用于实时识别宽带频谱中的RF发射与碰撞,JaX通过卷积神经网络实现无需导频的对抗性干扰消除,DEFORM利用深度神经网络优化多天线波束形成以增强接收信号质量。通过合成与真实数据实验验证,这些方法在提升无线通信的稳健性与安全性方面表现出色,展示了深度学习在网络安全和无线通信领域的重要潜力。原创 2025-09-05 14:35:41 · 28 阅读 · 0 评论 -
20、基于高级机器学习/深度学习的软件定义网络入侵检测系统
本文研究了基于高级机器学习与深度学习的软件定义网络(SDN)入侵检测系统,通过将流量分组和IDS链分配问题建模为优化问题,提升检测效率与准确性。评估中综合考虑有效性与效率指标,实验结果表明Entropy-KL-ML方法在准确率和误报率方面表现优异,SVM分类器具有良好的分类性能。研究还探讨了不同网络拓扑和分类器对检测效果的影响,并指出未来方向包括增强系统适应性、优化特征选择及应用深度学习技术以应对动态网络安全威胁。原创 2025-09-04 13:54:40 · 20 阅读 · 0 评论 -
19、软件定义网络中基于高级机器学习/深度学习的入侵检测系统
本文探讨了软件定义网络(SDN)中基于高级机器学习与深度学习的三种入侵检测方法:混合异常检测、基于样本的强化学习检测以及数据平面IDS链部署。通过Entropy-KL-ML集成学习框架提升异常识别准确性,Cyber-AnDe框架利用强化学习动态优化采样策略以减少信息丢失,结合在数据平面中分组流量并分配IDS链以降低延迟。三者协同工作,形成从检测、监控到响应的完整安全体系。文章还分析了各方法的优势与协同关系,并指出实际应用中需关注资源管理、分类准确性和算法复杂度等问题,为未来SDN安全防护提供了技术方向与优化原创 2025-09-03 12:57:17 · 18 阅读 · 0 评论 -
18、软件定义网络中基于高级机器学习/深度学习的入侵检测系统
本文综述了在软件定义网络(SDN)环境中基于高级机器学习与深度学习的入侵检测系统。详细介绍了统计方法(如熵、条件熵和KL散度)、监督分类方法(如SVM)、混合方法、深度学习模型(包括CNN、RNN和DBN)以及强化学习技术(如Q-learning和DRL)在网络异常检测中的原理与应用。通过对比各类方法的优缺点,分析其适用场景,并结合实际案例展示熵-KL散度混合方法在DoS攻击检测中的流程。文章还探讨了未来发展趋势,如多模态融合、自适应学习、边缘-云协同和对抗性学习,旨在为构建高效、智能的SDN安全防护体系提原创 2025-09-02 13:23:37 · 20 阅读 · 0 评论 -
17、软件定义网络中高级机器学习/深度学习入侵检测系统及迁移攻击研究
本文探讨了软件定义网络(SDN)中的安全挑战,重点研究了基于机器学习和深度学习的高级入侵检测系统(IDS)及其面临的迁移攻击问题。文章分析了SDN架构的优势与安全漏洞,比较了签名式与异常检测方法,并详细阐述了机器学习在IDS中的应用流程与常见算法性能。通过实验评估扰动范数对迁移性的影响,揭示了迁移攻击在不同模型间的有效性及局限性。最后提出了提升IDS性能的优化策略和完整的SDN安全防护体系架构,为未来网络安全研究提供了方向和建议。原创 2025-09-01 15:52:51 · 22 阅读 · 0 评论 -
16、入侵检测系统中对抗样本可迁移性研究
本文研究了入侵检测系统(IDS)中对抗样本的可迁移性,通过构建基于NSL-KDD数据集的多种机器学习替代模型(如MLP、SVM、NB等),比较了CW、FGSM、BIM和JSMA等白盒攻击算法在不同模型间的可迁移性。实验结果表明,CW攻击具有最高的可迁移性,MLP模型在生成高可迁移性对抗样本方面表现最优。研究还探讨了扰动范数对可迁移性的潜在影响,并为攻击者与防御者提供了实际应用启示,最后指出了未来需进一步研究的方向。原创 2025-08-31 15:25:05 · 27 阅读 · 0 评论 -
15、理解入侵检测系统中转移攻击的无效性
本文研究了入侵检测系统(IDS)中对抗样本(AEs)的可转移性,探讨了不同攻击算法、训练数据集和模型架构对转移攻击有效性的影响。通过构建替代模型并评估多种白盒攻击方法,发现CW攻击在生成高可转移性对抗样本方面表现最佳,且扰动范数在特定范围内显著影响可转移性。研究为理解IDS中转移攻击的无效性提供了依据,并为未来防御机制的设计指明方向。原创 2025-08-30 10:11:48 · 16 阅读 · 0 评论 -
14、人工智能与机器学习在网络安全中的应用:何去何从?
本文探讨了人工智能与机器学习在网络安全中的应用及其面临的安全挑战。重点分析了对抗性机器学习中的逃避攻击和投毒攻击,特别是在网络入侵检测场景下的问题空间与特征空间差异。文章还讨论了集成方法等防御策略的有效性,并强调AI/ML系统的供应链安全和漏洞披露管理的重要性。通过ATLAS框架和CVE示例,提出应从端到端角度评估AI/ML系统安全性,以应对不断演变的网络威胁。原创 2025-08-29 16:46:59 · 13 阅读 · 0 评论 -
13、人工智能与机器学习在网络安全入侵检测系统中的应用与挑战
随着网络攻击日益复杂,传统入侵检测系统难以应对新型威胁,人工智能(AI)和机器学习(ML)成为提升网络安全的关键技术。本文探讨了AI/ML在入侵检测系统中的应用,包括数据收集、模型训练与实时检测流程,并分析了基于签名、异常和规范的传统NIDS的优缺点。同时,文章指出AI/ML系统自身面临对抗性攻击、数据污染和供应链漏洞等风险,强调需加强防御机制、模型可解释性及安全设计原则。最后,提出未来研究方向应聚焦于鲁棒防御、安全标准制定、红队测试与负责任的漏洞披露,以构建更安全可靠的智能网络安全体系。原创 2025-08-28 10:18:47 · 24 阅读 · 0 评论
分享