36氪

让一部分人先看到未来。

小米7的性能怎么样?我们提前帮你跑了个分

编者按:本文来自微信公众号“ AppSo”(appsolution),作者:何宗丞;36氪经授权转载

2018 年不知不觉已经翻过了六分之一,诸如三星 Galaxy S9 等首批旗舰手机还没浮出水面,但其性能几何,我们已经提前探出了深浅。

在骁龙 845 发布两个月后,我们对这块芯片做了一次基准测试。恐怕不会有人反对,这块芯片将成为 2018 年 Android 旗舰手机的标配。无论是小米手机 7 还是三星 Galaxy S9,都很有可能搭载骁龙 845 处理器。

跑分性能碾压一众竞品,可能只有一个对手

用于跑分测试的是搭载骁龙 845 的高通开发机,Android 8.0 原生系统,5.9 英寸 1440×2560 分辨率屏幕,5GB RAM+9GB ROM 的配置组合虽然奇葩,但用来模拟实际操作基本没什么问题。在 GeekBench 的测试中,骁龙 845 跑出单核 2454,多核 8386 的成绩,估算下来单核提升了大约 20%,多核提升了大约 28%,符合高通 24%-30% 的设计目标。

对比两大竞品——Exynos 8895 和华为麒麟 970,发布相对较晚的骁龙 845 也不负众望,碾压对手。

从左到右:Mate 10(麒麟 970)、一加 5t(骁龙 835)、三星 Note 8(Exynos 889)、骁龙 845、iPhone X(A11 仿生芯片)如果要给骁龙 845 找出一个对手,那可能是 iPhone X 上那颗 A11 仿生芯片。从绝对数字上看,A11 的单核性能几乎是骁龙 845 的两倍,但考虑到跨平台测试的差异,我们认为将两者不具备可比性。毕竟在此前的测试中,就出现过 A11 与 X86 架构的 Intel Core i7-6700 分数相当的悖论。再来看国内厂商喜闻乐见的安兔兔,骁龙 845 的跑分飙到了令人咋舌的 266323 分。

浏览器 JavaScript 跑分是衡量 CPU 性能一个不错的指标,我们采用了 Kraken、Octane、SunSpider 等多个工具在 Chrome 上测试,有些分数越高越好,有些是越低越好,具体参考下表:

为了测试 3D 图形能力,我们在 GFXBench 中测试了多款游戏。其中 T-Rex 在 2392×1440 的分辨率下,帧率能维持在 60Fps 上下,另一款赛车游戏 Car Chase 在相同的分辨率下运行,帧率为 22Fps 左右,如果降低分辨率到 1080p,帧率则能提升到 35Fps。

那些跑分反应不了的东西,我们也测了下

熟悉爱范儿评测的朋友们可能知道,爱范儿在评测里很少有单独的跑分环节。在高通总部,专业人士给了我们一个很好的理论支持:
基准测试只能衡量手机非常有限的一部分。比如 CPU 性能、GPU 性能,以及一定程度上的内存性能。

高通负责产品管理高级总监的 Travis Lanier 告诉爱范儿,在测试一款芯片时,它的网络连接性能、AR 和 VR 的沉浸感、拍照能力、续航和充电速度,都是无法完整衡量的。

为了获得降噪算法,高通在总部设立了消声实验室一部分原因在于,跑分测试往往是逐个对手机不同单元进行测试,而现实中的异构计算更多是看不同模块的协同能力。比如手机拍照的时候,考验的是摄像头与 ISP 和 DSP 的协调能力。运动计步,计算卡路里就得通过 DSP 进行协处理,分担处理器的部分工作。而在运行大型 3D 游戏时,手机则会调用 GPU 的处理能力。比如智能手机的续航,几乎是所有移动设备的桎梏。在电池技术未能有显著突破之前,目前行之有效的办法只有两种,一是加速充电速度,二是降低设备的功耗。

在曼哈顿测试中,骁龙 845 的平均功耗为 2951mW,骁龙 835 为 3775mW。我们也尝试播放一段 4K@60fps 超高清视频,骁龙 845 的平均电耗大概是 1602mW,比骁龙 835 的 2080mW 低了 大约 23% 。关于功耗,用户常常有这么一个误解:中端芯片要比高端芯片能耗更低。而实际情况是,在执行相同性能需求的同一任务时,功能更强大的处理器通常功耗更小。此前高通在骁龙技术峰会上的测试数据显示,骁龙 660 的平均电耗是 1560mW,骁龙 835 是 1470mW,而性能最强的骁龙 845 只有 1350mW,比 660 的能效提升了 15%。所以,高通骁龙 845 的优势并不只是跑分成绩,而是在全负载或者高负载情况下要比骁龙 835 的发热和功耗要低很多,简单的理解,就是性能提升的同时更加节能。

手机里的人工智能究竟能做什么?

另一个无法用跑分衡量的就是 AI 的能力。高通没有像苹果和华为一样直接在芯片里增加单独的 AI 模块,而是通过由 CPU、GPU 和 DSP 组成的异构系统和 NPE 任务分配系统,帮助不同应用场景提供相应的计算解决方案。业界常常以计算能力作为评判 AI 性能的指标,比如 GOPS(GigaOps,千兆每秒的计算能力)和 TOPS(TeraOps,万亿次每秒的计算能力) ,但高通认为,这些数据并不能很好得反映 AI 性能。
因为使用 AI 的应用,以及支持这些应用的 AI 模型每年都在发生变化。对于 AI 来讲,目前最重要的是拥有广泛的生态系统合作伙伴,以及能够提供相应软件来支持。
从目前的情况看,AI 在智能手机上的应用场景仍然非常有限。高通告诉我们,简化图片和视频的拍摄、提升 VR 游戏的体验,让语音交互更自然将是三个主要方向。

利用骁龙 845 的类神经网络,今年 Android 旗舰的前置单摄像头就可以拍出媲美 iPhone X 虚化的人像效果。

根据场景自动添加滤镜,也是一个不错的功能,以往需要大量用户手工完成的后期操作,通过类神经网络的加持,在按下快门前就可以看到效果。

高通还展示了一个有趣的手势拍照功能,与目前智能手机上利用摄像头识别的手势拍照不同,这台搭载了骁龙 845 能够在数米之外准确地完成快门的激活。其原理是手机在自拍的时候发出超声波,当用户摆手改变了超声波的反射速度,芯片里的类神经网络就能够识别并自动完成拍照。「要知道,两年前我们还做不到这些。」高通的工作人员说。
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭