知识总结8

本文档记录了作者在英语、C语言、高等数学、线性代数等科目的学习进展。高数部分详细介绍了微分中值定理,包括费尔马定理、罗马定理、拉格朗日中值定理和柯西中值定理;并讲解了洛必达法则及其应用。线性代数部分涵盖了线性方程组解的结构、向量空间的概念以及基变换等内容。
摘要由CSDN通过智能技术生成

英语:

背下100个单词,百词斩与配套资料,孰知其意,练习听力,并且做了2篇阅读,3篇翻译。

C语言:

复习字符数据输入与输出

字符串输入与输出

格式输出函数与格式输入函数

高数:

学习微分中值定理:

费尔马定理:

设函数f(x)满足条件:

函数f(x)在X0的某邻域内有定义,并且在此邻域内恒有f(x)≤(≥)f(X0)

f(x)在X0处可导,则f'(X0)=0

罗马定理:

设函数f(x)满足条件:

在闭区间[a,b]上连续

在开区间(a,b)内可导

f(a)=f(b)。

则在(a,b)内至少存在一个ε,使得f'(ε)=0。

拉格朗日中值定理:

满足条件:

在闭区间[a,b]上连续

在开区间(a,b)内可导

柯西中值定理:

满足条件:

在闭区间[a,b]上连续

在开区间(a,b)内,f'(x)及g'(x)均存在,且g'(x)≠0。

学习洛必达法则:

在一定条件下通过分子和分母分别求导再求极限来确定未定式的值的方法称为洛必达法则。

学习基本未定式,对于复杂函数可先化为基本型再用洛必达法则。

通过定义与公式的运用进行解题计算。

通过视频授课了解以上知识点以及练习。

线性代数:

学习线性方程组解的结构:

了解解向量。

了解非齐次线性方程组

学习向量方程解的性质与定理。

学习向量的空间:

向量空间:设V为n维向量的集合,如果集合V非空,且集合V对于向量的加法以及数乘两种运算封闭,那么集合V为向量空间。

封闭:在集合V中可以进行向量的加法以及数乘两种运算。

子空间:向量V1以及V2,若V1包含于V2,就称V1是V2的子空间。

了解自然基。

学习基变换公式

学习坐标变换公式

了解过渡矩阵。

通过例子进行了解以及解题思路。

通过视频授课了解以上知识点以及练习。

 

转载于:https://www.cnblogs.com/www-bokeyuan-com/p/11297287.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值