2024年Stable Diffusion下载+安装+使用教程(超详细版本)收藏这一篇就够了!

本篇咱们要聊的是如何用“整合包”来搞定StabIe Diffusion WebUI的本地安装和使用,别担心,你不需要成为计算机大神,新手也能轻松上手。不过得提醒一下,你的硬盘得留出100G~200G的空间来,才能玩得转。

整合包放这里,添加领取哦。
在这里插入图片描述

咱们这篇教程,就是用最新版的SD整合包,加上我搜罗来的资源,来给大家来个AI绘画的入门大揭秘,安装方法也一并奉上。打从今天开始,AI绘画,特别是SD,就像是吃了大力丸,普及度噌噌往上涨!

SD基本概念

大模型: 这就是用素材和SD低模版本炼出来的大BOSS,直接用来生图,它就像是出图的灵魂,决定了画面的基调,格式通常是CKPT或SAFETENSORS。

VAE: 这货就像个调色板,给大模型加点稳定剂,保持画面色彩的和谐,也是CKPT或SAFETENSORS格式。

LoRA: 是个小巧的模型插件,能在大模型基础上炼出新风味,搭配使用,能在细节上调整风格或加点新元素。如果炼的时候用的是SD底模,那在不同大模型间切换时,兼容性杠杠的。要是专门针对某个大模型炼的,那配合起来效果绝对惊艳。

ControlNet: 这个插件牛大了,给SD装上了火眼金睛,能从图片里抓取线条、景深这些信息,再用来处理图片。

SD-WEBUI: 开源界的大神AUTOMATIC1111用Stability AI算法搞的软件,浏览器里点几下鼠标就能控制SD。

整合包:WEBUI部署起来网络和Python环境要求挺高,但整合包内置了隔离的Python环境和Git,不用你懂这些技术就能用。门槛低了,让更多人能轻松享受AI出图的乐趣。

一、Stable Diffusion安装步骤

咱们先得搞定启动器的运行环境,然后才能把整合包本体给解压出来。

第一步,点一下“启动器运行依赖-dotnet-6.0.11.exe”,它装一下。

第二步:把“sd-webui-aki-v4.zip”这个压缩包给解压了。

提醒一下: 咱们把启动器本体解压好了之后,先别急着启动它,咱们得先搞定模型的安装。

第三步:导入核心数据。

1、下载“推荐大模型”文件夹中的模型。

2、并把文件夹里的所有模型放在这个目录下:

\sd-webui-aki-v4\models\Stable-diffusion

3、同时,还要下载ControlNet模型

4、ControlNet模型文件夹里的所有内容,放在这个目录下:

[sd-webui-aki-v4](https://www.zhihu.com/search?q=sd-webui-aki-v4&search_source=Entity&hybrid_search_source=Entity&hybrid_search_extra=%7B%22sourceType%22%3A%22article%22%2C%22sourceId%22%3A%22704499085%22%7D)\models\ControlNet

5、最后,需要单独下载推荐LoRA

二、StabIe Diffusion 使用教程

开启软件运行!
把数据解压、导入都搞定了,现在轮到启动器上场了。

1、在安装目录里,就像找宝藏一样,往下一拉,找到那个‘A启动器.exe’,双击它!

2、再点击右下角的一键启动

3、再让这个界面多跑一会儿。

4、就可以看到它自动在浏览器中打开了一个新的网页,就算是启动成功了。

5、最终的效果。

例如:输入一个关键词“一个美女”,点击“生成”,结果效果图如下:

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
在这里插入图片描述

Stable Diffusion是一款基于深度学习的语言模型,它通常通过云服务提供,例如Hugging Face的Hub等。由于它是开源的,如果你想在本地安装并运行它,你需要做以下步骤: 1. **下载源码**: 首先,访问Stable Diffusion的GitHub仓库(https://github.com/huggingface/stable-diffusion),克隆或下载最新版本的代码。 2. **环境配置**: 确保你的系统上已经安装了必要的依赖,如Python(推荐使用3.7+版本)、PyTorch、Transformers库以及可能需要的GPU支持(如果有的话)。可以使用pip来安装这些库。 ```bash pip install torch torchvision transformers --upgrade ``` 3. **数据准备**: 模型训练通常需要大量的文本数据,这包括预处理后的训练数据和额外的配置文件。你可以从官方提供的数据集链接下载数据,并按照说明解压和配置。 4. **搭建环境**: 如果在本地运行大模型,可能还需要设置适当的内存限制和其他资源配置。比如,在某些Linux发行版中,可能需要设置CUDA_VISIBLE_DEVICES环境变量来指定GPU。 5. **编译模型**: 进入项目目录,根据项目的readme文档,可能需要对模型进行编译或转换,以便在本地部署。 6. **训练或加载**: 根据你的需求,选择是训练一个新模型还是直接加载预训练模型。如果是训练,可能需要运行训练脚本;如果是加载,找到合适的 checkpoint 文件进行加载。 7. **运行服务**: 使用像Flask这样的web框架创建一个API,将训练好的模型集成进去,允许用户输入请求并得到响应。 8. **安全性和性能优化**: 为了保护隐私和提高效率,记得加密敏感数据,调整好批处理大小和推理频率。 **注意事项**: 在本地运行大型模型可能会消耗大量计算资源,并且涉及到的数据处理也较为复杂。如果不是专业研究者或有特定需求,一般建议使用预训练模型和云服务来获取即时的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值