:scala版
package com.bbw5.dataalgorithms.spark
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import java.util.PriorityQueue
/**
* Assumption: for all input (K, V), K's are non-unique.
* This class implements Top-N design pattern for N > 0.
* The main assumption is that for all input (K, V)'s, K's
* are non-unique. It means that you will find entries like
* (A, 2), ..., (A, 5),...
*
* This is a general top-N algorithm which will work unique
* and non-unique keys.
*
* This class may be used to find bottom-N as well (by
* just keeping N-smallest elements in the set.
*
* Top-10 Design Pattern: “Top Ten” Structure
*
* 1. map(input) => (K, V)
*
* 2. reduce(K, List<V1, V2, ..., Vn>) => (K, V),
* where V = V1+V2+...+Vn
* now all K's are unique
*
* 3. Find Top-N using the following high-level Spark API:
* java.util.List<T> takeOrdered(int N, java.util.Comparator<T> comp)
* Returns the first N elements from this RDD as defined by the specified
* Comparator[T] and maintains the order.
* cat id,cat name,cat weight
* 1,cat1,13
* 2,cat2,10
* 3,cat3,14
* 4,cat4,13
* 5,cat5,20
* 6,cat6,24
* 7,cat7,13
* 8,cat8,10
* 9,cat9,24
* 10,cat10,13
* 11,cat11,30
* 12,cat12,14
* @author babaiw5
*
*/
object SparkTop10UsingTakeOrdered {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("SparkTop10UsingTakeOrdered")
val sc = new SparkContext(sparkConf)
val filename = "G:/temp/data/top1.txt"
val textFile = sc.textFile(filename)
val topN = 5
val topNRDD = textFile.map(_.split(",")).map(d =>
((d(0), d(1)), d(2).toInt)).reduceByKey((a, b) => a + b).
takeOrdered(topN)(Ordering.by[((String, String), Int), Int](-_._2))
topNRDD.foreach(println)
}
}