帝吧出征FB:这李毅吧的“爆吧”文化是如何形成的

声明:本文不对爆吧行为及其涉及的事件进行是非判断,只探讨帝吧文化本身,欢迎拍砖、更正和补充。

 

一、“帝吧FB出征”事件梳理

 

继上次全网集体骂 “薯片”事件后,昨日(1月20日)晚7点,又发生了一次互联网集体事件。“帝吧(即李毅吧,下称帝吧)”组织了一场乱中有序的远征事件——征战facebook,#帝吧fb出征#,战争目标明确:给td分子上一堂 “中国课”。

 

这几天以来的中台大战最初起因是黄安引爆的周子瑜事件,进而连环发展到林更新fb表情包大战、何韵诗淘宝店 “撤资”,并在昨日发生了帝吧fb出征事件。

 

战前准备

 

目前为止,帝吧粉丝数超过2千万,贴子数超过8亿。

 

帝吧此次出征可谓有组织有纪律,各部门分工明确:出征队伍被分为两个总群及一个前线部队,每个总群下又设有6路纵队,责任分别包括情报工作(收集td言论和图片);宣传和组织工作(发帖招人);武器装备工作

 

 

转载于:https://www.cnblogs.com/descusr/p/5148793.html

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值