秋招投递记录

牛客

面试问题汇总

(1)为什么LR模型损失函数使用交叉熵不用均方差?

(2)YOLOv3如何确定正负anchor?YOLOv3不使用ohem表现良好,而SSD必须用ohem?

(3)BN的前提假设?BN为什么可以防止过拟合?alpha和beta两个参数如何平移和缩放?BN先归一化再恢复是否矛盾。

(4)L1、L2正则和weight delay这个参数的关系

(5)sigmoid为什么可以防止梯度消失?(除sigmoid在0附近梯度大,而输出较大较小时梯度小,还有其他什么原因)

(6)bagging的采样方法

(7)Dead Relu神经元失活问题

(8)adam中几个参数的意义

(9)对一张含有多个目标的图像,给定一个分类器,在不增加新层的前提下,如何得到图像中每个目标的位置。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>