面试问题汇总
(1)为什么LR模型损失函数使用交叉熵不用均方差?
(2)YOLOv3如何确定正负anchor?YOLOv3不使用ohem表现良好,而SSD必须用ohem?
(3)BN的前提假设?BN为什么可以防止过拟合?alpha和beta两个参数如何平移和缩放?BN先归一化再恢复是否矛盾。
(4)L1、L2正则和weight delay这个参数的关系
(5)sigmoid为什么可以防止梯度消失?(除sigmoid在0附近梯度大,而输出较大较小时梯度小,还有其他什么原因)
(6)bagging的采样方法
(7)Dead Relu神经元失活问题
(8)adam中几个参数的意义
(9)对一张含有多个目标的图像,给定一个分类器,在不增加新层的前提下,如何得到图像中每个目标的位置。
4107

被折叠的 条评论
为什么被折叠?



