小波变换
文章平均质量分 91
1273545169
这个作者很懒,什么都没留下…
展开
-
【小波变换】小波变换入门----haar小波
小波变换的基本思想是用一组小波函数或者基函数表示一个函数或者信号,例如图像信号。首先,以haar小波变换过程为例来理解小波变换。例:求有限信号的均值和差值 假设有一幅分辨率只有4个像素 的一维图像,对应的像素值或者叫做图像位置的系数分别为:[9 7 3 5],计算它的哈尔小波变换系数。 计算步骤如下:步骤1:求均值(averaging),也叫Approximation。计算相邻像素对的平均值,...原创 2018-12-05 16:01:39 · 50828 阅读 · 9 评论 -
【图像超分辨率】Wavelet-SRNet -- A Wavelet-based CNN for Multi-scale Face Super Resolution
paper:Wavelet-SRNetgithub:A pytorch implementation of Paper Wavelet-srnet原创 2018-12-20 11:14:10 · 5737 阅读 · 12 评论 -
【小波变换】小波阈值去噪
小波阈值去噪有两个关键点:一是阈值的选取,二是阈值函数的选取。硬阈值法:将信号的绝对值与阈值进行比较,小于阈值的点置为零,其他保持不变;软阈值法:将信号的绝对值和阈值进行比较,小于阈值的点置为零,大于或等于阈值的点则向零收缩,变为该点值与阈值之差。硬阈值法可以对图像的边缘和细节等局部信息进行保留,但图像会发生局部失真;而软阈值处理则相对平滑 ,但其又使得边缘模糊 、图像失真。...原创 2018-12-27 20:08:59 · 27084 阅读 · 4 评论 -
【小波变换】小波变换python实现--PyWavelets
1、二维图像单级变换:dwt2()import numpy as npimport pywtimport cv2import matplotlib.pyplot as pltimg = cv2.imread("cat.jpg")img = cv2.resize(img, (448, 448))# 将多通道图像变为单通道图像img = cv2.cvtColor(img, cv2....原创 2018-12-17 22:44:16 · 45142 阅读 · 32 评论 -
【图像超分辨率】DWSR -- Deep Wavelet Prediction for Image Super-resolution
论文:Deep Wavelet Prediction for Image Super-resolutiongithub:https://github.com/tT0NG/DWSRx4摘要图像超分辨率(Image Super-Resolution ,SR)指的是从低分辨率(Low-Resolution,LR)图像中重建出其对应的高分辨率(High-Resolution,HR)图像。SR可视...原创 2018-12-28 20:14:05 · 3450 阅读 · 2 评论 -
【小波变换】wavedecn方法
wavedecn wavedecn(data, wavelet, mode='symmetric', level=None, axes=None) Multilevel nD Discrete Wavelet Transform. Parameters ---------- data : ndarray nD input data ...原创 2019-04-29 13:46:24 · 1348 阅读 · 0 评论