本仅包含初级阶段如何有效运行Demo,下篇文章将会介绍如何训练模型。
环境搭建
1.python3.6
2.tensorflow
3.CTPN源码
下载地址: https://github.com/eragonruan/text-detection-ctpn/releases

解压源码,一个是已经训练好的模型。
运行中的问题
使用PyCharm或者IDEA打开项目后,选择demo_pb.py运行将依次遇到的错误:
- easydict未安装 ,可以使用conda install easydict或者pip install easydict;
- 无法找到text.yml文件,修改路径ctpn/text.yml,去掉ctpn/;
- 无法找到ctpn.pb文件,将下载的训练模型移入ctpn/data目录下
本文档介绍了使用TensorFlow实现CTPN文字定位与识别的基本步骤,包括环境搭建、解决运行中遇到的问题,如安装依赖、配置文件路径、模型导入等。在环境搭建部分,提到了需要python3.6和tensorflow,并提供了CTPN源码的下载地址。在运行过程中,可能会遇到easydict缺失、text.yml和ctpn.pb文件路径问题、编码及分隔符错误,文中给出了相应的解决方案。此外,还提及了通过修改text.yml配置文件以实现全方向的文字识别。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



