MySQL索引基础续

背景

承接上文MySQL索引基础,本文讨论查询优化(Query optimization)

写在前面
参考文章http://blog.codinglabs.org/articles/theory-of-mysql-index.html

link

示例数据库

为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):
在这里插入图片描述

MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。
导入数据的方式请参考官方文档,或是之前的文章

表信息如下:
+--------------+------------------+-------------+--------------+------------+--------+
| TABLE_SCHEMA | TABLE_NAME       | data_length | index_length | total_size | engine |
+--------------+------------------+-------------+--------------+------------+--------+
| employees    | tchecksum        | 303.84M     | 0.00M        | 303.84M    | InnoDB |
| employees    | salaries         | 95.63M      | 0.00M        | 95.63M     | InnoDB |
| employees    | employees        | 14.52M      | 8.52M        | 23.03M     | InnoDB |
| employees    | titles           | 19.56M      | 0.00M        | 19.56M     | InnoDB |
| employees    | dept_emp         | 11.52M      | 5.52M        | 17.03M     | InnoDB |
| employees    | dept_manager     | 0.02M       | 0.02M        | 0.03M      | InnoDB |
| employees    | departments      | 0.02M       | 0.02M        | 0.03M      | InnoDB |
| employees    | found_values     | 0.02M       | 0.00M        | 0.02M      | InnoDB |
| employees    | expected_values  | 0.02M       | 0.00M        | 0.02M      | InnoDB |
| employees    | current_dept_emp | NULL        | NULL         | NULL       | NULL   |
+--------------+------------------+-------------+--------------+------------+--------+

原文链接http://blog.codinglabs.org/articles/theory-of-mysql-index.html
link

最左前缀

以employees.titles表为例(443308行),下面先查看其上都有哪些索引:(之前已经把辅助索引删了)
SHOW INDEX FROM employees.titles;(现在的情况是emp_no,title,from_date三列的联合主键索引)
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| titles |          0 | PRIMARY  |            1 | emp_no      | A         |      302897 |     NULL | NULL   |      | BTREE      |         |               |
| titles |          0 | PRIMARY  |            2 | title       | A         |      442367 |     NULL | NULL   |      | BTREE      |         |               |
| titles |          0 | PRIMARY  |            3 | from_date   | A         |      442367 |     NULL | NULL   |      | BTREE      |         |               |
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
*************************** 1. row ***************************
       Table: titles
Create Table: CREATE TABLE `titles` (
  `emp_no` int(11) NOT NULL,
  `title` varchar(50) NOT NULL,
  `from_date` date NOT NULL,
  `to_date` date DEFAULT NULL,
  PRIMARY KEY (`emp_no`,`title`,`from_date`),
  CONSTRAINT `titles_ibfk_1` FOREIGN KEY (`emp_no`) REFERENCES `employees` (`emp_no`) ON DELETE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

从结果中可以到titles表的主索引为<emp_no, title, from_date>,还有一个辅助索引<emp_no>。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

ALTER TABLE employees.titles DROP INDEX emp_no;

这样就可以专心分析索引PRIMARY的行为了。

情况一:全列匹配

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND
from_date='1986-06-26';
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref               | rows | filtered | Extra |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------+
|  1 | SIMPLE      | titles | NULL       | const | PRIMARY       | PRIMARY | 209     | const,const,const |    1 |   100.00 | NULL  |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------+

很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,
索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,

但是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,
例如我们将where中的条件顺序颠倒:效果是一样的。

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='10001' AND title='Senior Engineer';
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref               | rows | filtered | Extra |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------+
|  1 | SIMPLE      | titles | NULL       | const | PRIMARY       | PRIMARY | 209     | const,const,const |    1 |   100.00 | NULL  |
+----+-------------+--------+------------+-------+---------------+---------+---------+-------------------+------+----------+-------+

情况二:最左前缀匹配

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001';
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table  | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | titles | NULL       | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------+
当查询条件精确匹配索引的左边连续一个或几个列时,如<emp_no><emp_no, title>,
所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。
上面的查询从分析结果看用到了PRIMARY索引,但是key_len为4,说明只用到了索引的第一列前缀。

情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26';
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table  | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |    10.00 | Using where |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+

此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让from_date也使用索引而不是where过滤,可以增加一个辅助索引<emp_no, from_date>,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date之间的“坑”填上。

首先我们看下title一共有几种不同的值:

SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title              |
+--------------------+
| Senior Engineer    |
| Staff              |
| Engineer           |
| Senior Staff       |
| Assistant Engineer |
| Technique Leader   |
| Manager            |
+--------------------+

只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no='10001'
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | range | PRIMARY       | PRIMARY | 209     | NULL |    7 |   100.00 | Using where |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

这次key_len为209,说明索引被用全了,但是从typerows看出IN实际上执行了一个range查询,这里检查了7key。看下两种查询的性能比较:

SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                         |
+----------+------------+-------------------------------------------------------------------------------+
|       10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'|
|       11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ...          |
+----------+------------+-------------------------------------------------------------------------------+

“填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。
当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

情况四:查询条件没有指定索引第一列

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';
+----+-------------+--------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table  | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+--------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 442367 |    10.00 | Using where |
+----+-------------+--------+------------+------+---------------+------+---------+------+--------+----------+-------------+
由于不是最左前缀,索引这样的查询显然用不到索引。

必须把 emp_no列,也就是联合索引的最左列放最前面:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no=10001;
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table  | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | titles | NULL       | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | NULL  |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------+

情况五:匹配某列的前缀字符串

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE 'Senior%';
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | range | PRIMARY       | PRIMARY | 206     | NULL |    1 |   100.00 | Using where |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

 EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE '%Senior%';
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table  | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |    11.11 | Using where |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
filtered:使用explain extended时会出现这个列,5.7之后的版本默认就有这个字段,不需要使用explain extended了。这个字段表示存储引擎返回的数据在server层过滤后,剩下多少满足查询的记录数量的比例,注意是百分比,不是具体记录数。
 
此时可以用到索引,是因为emp_no='10001'是前缀的等值查询。

显然推荐第一种查询方式,%在字符串最后Senior%,%在最前可以理解为无法使用索引%Senior。

情况六:范围查询

EXPLAIN SELECT * FROM employees.titles WHERE emp_no < '10010' and title='Senior Engineer';
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL |   14 |    10.00 | Using where |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+

范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。

同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no < '10010'
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';

+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL |   14 |     1.11 | Using where |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+

可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,
那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。
同时,用了“between”并不意味着就是范围查询,例如下面的查询:

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '10001' AND '10010'
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';

+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table  | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | range | PRIMARY       | PRIMARY | 209     | NULL |   15 |     1.11 | Using where |
+----+-------------+--------+------------+-------+---------------+---------+---------+------+------+----------+-------------+

看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。
索引最多用于一个范围列,emp_no(最左列)上的“BETWEEN”实际上相当于“IN”

情况七:查询条件中含有函数或表达式

如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND left(title, 6)='Senior';

+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table  | partitions | type | possible_keys | key     | key_len | ref   | rows | filtered | Extra       |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |   100.00 | Using where |
+----+-------------+--------+------------+------+---------------+---------+---------+-------+------+----------+-------------+

虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,
而情况五中用LIKE则可以。再如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='10000';

+----+-------------+--------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table  | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+--------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | titles | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 442367 |   100.00 | Using where |
+----+-------------+--------+------------+------+---------------+------+---------+------+--------+----------+-------------+

显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,
MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,
因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。

索引选择性与前缀索引

个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
Index Selectivity = Cardinality / #T

显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。
例如,上文用到的employees.titles表,如果title字段经常被单独查询,
是否需要建索引,我们看一下它的选择性:

SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
|      0.0000 |
+-------------+

title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。

有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使用。

看到employees表只有一个索引<emp_no>,那么如果我们想按名字搜索一个人,就只能全表扫描了:

EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+-------------+
| id | select_type | table     | partitions | type | possible_keys | key  | key_len | ref  | rows   | filtered | Extra       |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+-------------+
|  1 | SIMPLE      | employees | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 299468 |     1.00 | Using where |
+----+-------------+-----------+------------+------+---------------+------+---------+------+--------+----------+---------

如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。
有两种选择,建<first_name><first_name, last_name>,看下两个索引的选择性:

SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.0042 |
+-------------+

SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.9313 |
+-------------+

<first_name>显然选择性太低,<first_name, last_name>选择性很好,
但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?
可以考虑用first_name和last_name的前几个字符建立索引,
例如<first_name, left(last_name, 3)>,看看其选择性:

SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.7879 |
+-------------+

选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
|      0.9007 |
+-------------+

这时选择性已经很理想了,而这个索引的长度只有18,比<first_name, last_name>短了接近一半,我们把这个前缀索引 建上:
ALTER TABLE employees.employees
ADD INDEX `first_name_last_name4` (first_name, last_name(4));

此时再执行一遍按名字查询,比较分析一下与建索引前的结果:
SHOW PROFILES;
+----------+------------+---------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                           |
+----------+------------+---------------------------------------------------------------------------------+
|       87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
|       90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
+----------+------------+---------------------------------------------------------------------------------+

性能的提升是显著的,查询速度提高了120多倍。

前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BYGROUP BY操作,
也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。

InnoDB的主键选择与插入优化

在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。

上文讨论过InnoDB的索引实现,InnoDB使用聚集索引,数据记录本身被存于主索引(一颗B+Tree)的叶子节点上。
这就要求同一个叶子节点内(大小为一个内存页或磁盘页)的各条数据记录按主键顺序存放,
因此每当有一条新的记录插入时,MySQL会根据其主键将其插入适当的节点和位置,
如果页面达到装载因子(InnoDB默认为15/16),则开辟一个新的页(节点)。

如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,
当一页写满,就会自动开辟一个新的页。如下图所示:

在这里插入图片描述

这样就会形成一个紧凑的索引结构,近似顺序填满。由于每次插入时也不需要移动已有数据,
因此效率很高,也不会增加很多开销在维护索引上。

如果使用非自增主键(如果身份证号或学号等),由于每次插入主键的值近似于随机,
因此每次新纪录都要被插到现有索引页得中间某个位置:

在这里插入图片描述

此时MySQL不得不为了将新记录插到合适位置而移动数据,甚至目标页面可能已经被回写到磁盘上而从缓存中清掉,此时又要从磁盘上读回来,这增加了很多开销,同时频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE来重建表并优化填充页面。

因此,只要可以,请尽量在InnoDB上采用自增字段做主键。

本文说明,主要技术内容来自互联网技术大佬的分享,还有一些自我的加工(仅仅起到注释说明的作用)。如有相关疑问,请留言,将确认之后,执行侵权必删

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值