DataWhale_天池_零基础入门金融风控_贷款违约预测_Task2_数据分析

队伍: NULL

阿里天池比赛地址:
零基础入门金融风控-贷款违约预测

DataWhale组队学习地址:
九月组队学习

一、赛题背景

本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第四场 —— 零基础入门金融风控-贷款违约预测。

赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

为了更好的引导大家入门,赛题方同时为本赛题定制了学习方案,其中包括数据科学库、通用流程和baseline方案学习三部分。通过对本方案的完整学习,可以帮助掌握数据竞赛基本技能。同时平台也将提供专属的视频直播学习通道,敬请关注平台通告。

二、赛题数据

赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

FieldDescription
id为贷款清单分配的唯一信用证标识
loanAmnt贷款金额
term贷款期限(year)
interestRate贷款利率
installment分期付款金额
grade贷款等级
subGrade贷款等级之子级
employmentTitle就业职称
employmentLength就业年限(年)
homeOwnership借款人在登记时提供的房屋所有权状况
annualIncome年收入
verificationStatus验证状态
issueDate贷款发放的月份
purpose借款人在贷款申请时的贷款用途类别
postCode借款人在贷款申请中提供的邮政编码的前3位数字
regionCode地区编码
dti债务收入比
delinquency_2years借款人过去2年信用档案中逾期30天以上的违约事件数
ficoRangeLow借款人在贷款发放时的fico所属的下限范围
ficoRangeHigh借款人在贷款发放时的fico所属的上限范围
openAcc借款人信用档案中未结信用额度的数量
pubRec贬损公共记录的数量
pubRecBankruptcies公开记录清除的数量
revolBal信贷周转余额合计
revolUtil循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
totalAcc借款人信用档案中当前的信用额度总数
initialListStatus贷款的初始列表状态
applicationType表明贷款是个人申请还是与两个共同借款人的联合申请
earliesCreditLine借款人最早报告的信用额度开立的月份
title借款人提供的贷款名称
policyCode公开可用的策略_代码=1 新产品不公开可用的策略_代码=2
n系列匿名特征匿名特征n0-n14,为一些贷款人行为计数特征的处理

三、赛题流程及分Task任务内容

(一)、赛题流程图(via DataWhale)

赛题流程图

(二)、分Task任务内容

项目Value
Task1赛题理解
Task2数据分析
Task3特征工程
Task4建模调参
Task5模型融合

数据分析阶段,我们需要对数据进行进一步的理解和分析。
通常的处理过程可以包括:

  • 总体了解:如数据数量、维度数量、列名、空值统计、数值型数据的描述性统计
  • 缺失值、唯一值:查看缺失值特征及缺失率等
  • 数据类型:数值型类型有哪些,对象类型有哪些。进一步,连续性和离散型的数据情况
  • 可视化:可视化可以是数据的分布,比例,或者时间序列的数据展示等
  • 数据透视表:数据透视表可以帮助我们更好的理解数据之间的关系
    (随学习的深入,会继续更新添加数据分析相关的其他内容)
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页