机器学习入门-1

  • 人工智能、机器学习、深度学习关系简介

机器学习早期应用:垃圾邮件分类

传统计算机解决的思路是规则编写,定义什么是垃圾邮件,然后让计算机执行类似一大堆的if-else;但是:很多问题的规则很难编写,规则在不断变化,同一时间不同地方的规则可能也不一样

人工智能:搜索算法(梯度下降等)、机器学习…

机器学习:深度学习、knn、svm、pca、正则化、线性回归、多项式回归、逻辑回归、决策树、随机森林…

  • 学习目标:

  • 对于数据的介绍

X矩阵行数,样本数,列数,特征数;y是向量

一般向量约定是列向量

下面以两个特征为例讲解:

特征有时候可以很直观比如人的身高体重等但有时候也会抽象,比如像素值

  • 分类问题:二分类、多分类,很多复杂问题都可转化为多分类问题,比如下棋根据棋盘分类选择落子地方、2048选择上下左右、无人驾驶方向盘的角度油门深浅刹车设置级别等,但是多分类只是解决问题的一种方法,考虑其他因素还有别的方法

高级的分类,多标签分类

  • 回归任务:结果是一个连续的值,不是类别

  • 机器学习

机器学习可分为:

                            监督学习(supervised learning)

                            无监督学习(unsupervised learning)

                            半监督学习(semi-supervised learning)

                            增强学习(reinforcement learning)

监督学习中典型的有分类(classification)和回归(regression),典型算法有  logistic regression(LR)、BP神经网络、线性回归算法等。分类的标签是离散值、回归的是连续值。

无监督中典型的是聚类(clustering),代表算法是K-Means、DBSCAN等。在学习的时候并不知道分类结果是否正确。聚类将相似特征的样本划归到同一类,但是并不关心这类具体是什么。无监督还有一类重要算法是降维,将样本点从输入空间通过线性或非线性变换映射到一个低维空间,从而获得关于原数据集紧致的低维表示,降维还方便可视化比如降到2维。

无监督学习还有个作用是异常检测

比如相册中有的相片标记了在北京在上海,有的没有,那相册集中相片就是一个半监督的数据集

只对结果做评价,应用:无人驾驶、机器人等强人工智能

  • 在线学习和批量学习

不再从后来输入的样本中学习

输入样例得到输出结果之后,等得到与输入样例相对应的标签,这些数据也会作为算法学习的资料

  • 参数学习和非参数学习

参数学习:一旦学习到了参数就不需要原始数据

非参数学习:不对模型进行统计上的假设,不对问题进行建模,训练过程是数据集也要参与预测的过程,不过非参数学习并不是没有参数,可能会存在超参数,超参数不是学习到的参数

机器学习算法处理的主要是不确定世界中相关问题和传统经典算法解决的问题不同,经典算法解决的问题通常有固定答案

某个算法对于所有问题的平均效果(期望)是一样的,即没有一个算法比另外一个算法更好,但是对于不同的具体问题来说一般不一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值