Description
下水道的主干路由n个节点和n-l条边组成,每条边有一个通过它所需的时间Ti。换言之,这是一棵n个节点的带权树。现在,要用最快的速度赶往目标节点k。下水道有一些塌陷,这导致主干路的某一段路径可以通过该塌陷到另一条路径。对于一个塌陷,我们用(L1,R1,L2,R2,c)来描述,即对于主干路上L1到R1路径上的任意节点x,L2到R2路径上的任意节点y,都可以在c的时间内从x走到y。因为不知道自己所在的到底是哪个节点,所以要求出每个节点到目标节点K的最短距离。注意边是单向的
Solution
直接线段树优化建图显然不行,考虑发现一些性质。首先可以把一开始的树边也看作塌陷。显然对于一个塌陷,只有在dijkstra过程中第一个访问到的点才是有用的,也就是一个点用某条边更新完另一些点后这条边就废了,但是这样仍然不行,因为一个点可能被更新多次。考虑如何让每个点只被更新一次,我们可以把边也放入堆中,权值为最早到达这条边的点最短路+边权。每次取出堆顶,如果取出的是点,就用它更新边,如果取出的是边,就用来更新点。这样可以保证每条边和点都只被更新一次。如何实现呢?维护点可以用并查集,维护边可以用一个线段树+set。
Code
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pa pair<int,int>
const int Maxn=250010,Maxm=100010;
const int inf=2147483647;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+(ch^48),ch=getchar();
return x*f;
}
int n,m,k,fa[Maxn][18],dep[Maxn],in[Maxn],out[Maxn],dfn=0;
vector<int>edge[Maxn];
void dfs(int x,int ff)
{
fa[x][0]=ff,dep[x]=dep[ff]+1;in[x]=++dfn;
for(int i=1;(1<<i)<=dep[x];i++)fa[x][i]=fa[fa[x][i-1]][i-1];
for(int i=0;i<edge[x].size();i++)
{
int y=edge[x][i];
if(y==ff)continue;
dfs(y,x);
}out[x]=dfn;
}
int LCA(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
for(int i=17;i>=0;i--)
if((1<<i)<=dep[x]-dep[y])x=fa[x][i];
if(x==y)return x;
for(int i=17;i>=0;i--)
if((1<<i)<=dep[x]&&fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
struct Edge
{
int l1,r1,l2,r2,c,p1,p2;bool del;
Edge(int _l1=0,int _r1=0,int _l2=0,int _r2=0,int _c=0)
{l1=_l1,r1=_r1,l2=_l2,r2=_r2,c=_c;}
}e[(Maxn<<1)+Maxm];
int rt[Maxn];
int findrt(int x){return((rt[x]==x)?x:rt[x]=findrt(rt[x]));}
struct Seg{int l,r,lc,rc,mn,Fa;}tr[Maxn<<1];
int tot=0;
struct P
{
int dep,id,o;
P(int _dep,int _id,int _o)
{dep=_dep,id=_id,o=_o;}
};
bool operator<(P a,P b)
{
if(a.dep!=b.dep)return a.dep<b.dep;
if(a.id!=b.id)return a.id<b.id;
}
set<P>S[Maxn<<1];
void up(int x)
{
int lc=tr[x].lc,rc=tr[x].rc;
tr[x].mn=min(tr[lc].mn,tr[rc].mn);
}
void build(int l,int r)
{
int x=++tot;
tr[x].l=l;tr[x].r=r;tr[x].mn=inf;
if(l==r)return;
int mid=l+r>>1;
tr[x].lc=tot+1,build(l,mid);
tr[x].rc=tot+1,build(mid+1,r);
tr[tr[x].lc].Fa=tr[tr[x].rc].Fa=x;
}
void Insert(int x,int p,int o,int id)
{
if(tr[x].l==tr[x].r)
{
S[x].insert(P(dep[e[id].p1],id,o));
tr[x].mn=(*S[x].begin()).dep;
return;
}
int mid=tr[x].l+tr[x].r>>1,lc=tr[x].lc,rc=tr[x].rc;
if(p<=mid)Insert(lc,p,o,id);
else Insert(rc,p,o,id);
up(x);
}
int u[100],lu;
void get(int x,int l,int r)
{
if(tr[x].l==l&&tr[x].r==r){u[++lu]=x;return;}
int mid=tr[x].l+tr[x].r>>1,lc=tr[x].lc,rc=tr[x].rc;
if(r<=mid)get(lc,l,r);
else if(l>mid)get(rc,l,r);
else get(lc,l,mid),get(rc,mid+1,r);
}
int ID;
void go(int x,int dep)
{
if(tr[x].l==tr[x].r)
{
ID=-1;
while(!S[x].empty())
{
P t=(*S[x].begin());
if(e[t.id].del)S[x].erase(t);
else if(t.dep>=dep)break;
else
{
ID=t.id;
S[x].erase(t);
break;
}
}
if(S[x].empty())tr[x].mn=inf;
else tr[x].mn=(*S[x].begin()).dep;
while(x!=1){x=tr[x].Fa;up(x);}
return;
}
int lc=tr[x].lc,rc=tr[x].rc;
if(tr[lc].mn<dep)go(lc,dep);
else go(rc,dep);
}
LL f[Maxn],g[(Maxn<<1)+Maxm];
struct Node
{
int x,type;LL t;
Node(int _x,int _type,LL _t){x=_x,type=_type,t=_t;}
};
bool operator<(Node a,Node b){return a.t>b.t;}
priority_queue<Node>q;
vector<int>H[Maxn];
void dijkstra()
{
memset(f,63,sizeof(f));f[k]=0;rt[k]=fa[k][0];
memset(g,63,sizeof(g));
q.push(Node(k,0,0));
while(!q.empty())
{
Node t=q.top();q.pop();
int p=t.x;
if(t.type==0)
{
for(int i=0;i<H[p].size();i++)
{
int tmp=H[p][i];
if(e[tmp].del)continue;
e[tmp].del=true;
g[tmp]=f[p]+e[tmp].c;
q.push(Node(tmp,1,g[tmp]));
}
lu=0;get(1,in[p],out[p]);
for(int i=1;i<=lu;i++)
{
int v=u[i];
while(tr[v].mn<dep[p])
{
go(v,dep[p]);
if(ID!=-1)
{
e[ID].del=true;
g[ID]=f[p]+e[ID].c;
q.push(Node(ID,1,g[ID]));
}
else if(tr[v].mn>=dep[p])break;
}
}
}
else
{
int x=findrt(e[p].l2);
while(dep[x]>=dep[e[p].p2])
{
f[x]=g[p];
q.push(Node(x,0,f[x]));
rt[x]=findrt(fa[x][0]);
x=rt[x];
}
x=findrt(e[p].r2);
while(dep[x]>=dep[e[p].p2])
{
f[x]=g[p];
q.push(Node(x,0,f[x]));
rt[x]=findrt(fa[x][0]);
x=rt[x];
}
}
}
}
int main()
{
n=read(),m=read(),k=read();
for(int i=0;i<=n;i++)rt[i]=i;
for(int i=1;i<n;i++)
{
int x=read(),y=read(),d=read();
edge[x].push_back(y),edge[y].push_back(x);
e[(i<<1)-1]=Edge(x,x,y,y,d);
e[i<<1]=Edge(y,y,x,x,d);
}
for(int i=1;i<=m;i++)
{
int l1=read(),r1=read(),l2=read(),r2=read(),c=read();
e[((n-1)<<1)+i]=Edge(l2,r2,l1,r1,c);
}
dep[0]=-1;dfs(1,0);
build(1,n);
for(int i=1;i<=((n-1)<<1)+m;i++)
{
e[i].p1=LCA(e[i].l1,e[i].r1);e[i].p2=LCA(e[i].l2,e[i].r2);
H[e[i].p1].push_back(i);
e[i].del=false;
if(e[i].l1!=e[i].p1)Insert(1,in[e[i].l1],1,i);
if(e[i].r1!=e[i].p1)Insert(1,in[e[i].r1],2,i);
}
dijkstra();
for(int i=1;i<=n;i++)printf("%lld\n",f[i]);
}