网络设计的技巧#李宏毅机器学习Part5

类神经网络训练不起来怎么办?

1.局部最小值和鞍点

梯度为0对应critical point,可能是局部最小值local minima,也可能是鞍点saddle point。

2.batch批次和momentum动量

batch size大小需要进一步结合训练时间、预测准确度进行判断。

一般地,大的batch size具有更快的速度,小的batch size具有更好的优化性能和泛化性能。

3.学习率

不同的学习阶段需要不同的学习率。

可以考虑梯度学习率或warm up策略。

4.loss function

分类问题和回归问题采用的损失函数不一样。

5.batch normalization

对数据每一维进行batch normalization,使得数据分布特征相近。如使用0-1标准化使得数据均值为0、标准化为1.

这样使得一个学习率对所有参数能够进行较快的梯度下降。

ref

李宏毅《机器学习/深度学习》2021课程(国语版本,已授权)_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值