程序的思路:
(1)E的前后两部分分开存储
(2)判断指数的大小,
若是等于0,不需要做什么改动;
若是小于0,则是小数点向左移,不管移动多少位,最终小数点的左边会是0,此时,就要观察移动后的小数点后面需要添加几个0;
若是大于0,又分了三种情况(我就是在这个地方少考虑了一种情况)设length_1表示小数的位数,length_2表示指数的大小,例如 "+1.23E-03" ,则 length_1 = 5,length_2 = 3
则判断length = length_2 - length_1 + 3,至于为甚+3,找找规律不难发现。
1)若是length > 0 :说明向后移的位数很多,小数后面还有加0,自然小数点就没了;
2)若是length < 0 :说明就是把小数点后移几位,小数的位数可以抗的起移动的位数;
3)若是length == 0 :说明小数点移动正好到小数的最后,此时小数点没有了,后面也不用加0.
出现的问题都是在这一块,分情况时拎不清,还有就是程序过于繁琐。
主要有两个问题:
(1)运行超时
在刚开始运行时还不会出现运行超时的现象,但是,复杂度大的程序提交几次后,就会显示出运行超时的结果,这也说明程序应该尽可能的简洁。开始的时候我是想到使用列表将E前后的数据分别进行存储,但是这样的话在遍历的时候就会使用多个while,使得程序运行时间超时,因此,在借鉴了他人的程序后,发现可以直接的使用分离之后的字符串进行操作即可,使得运行时间大大的减少。
(2)测试点2,3老是出现错误
这个是因为分情况讨论时落下了一种情况,就是当输入类似 “+1.234E+3” 这个情况时,没有考虑到把这种情况单独的进行分类,所以一直的报错。
(3)通过阅读他人的代码找到了自己的问题,下面是链接,大神的代码中有个小错误,但是pat测试依然是通过的。好神奇
import re
def get_out():
last_num = int(list)
if last_num == 0:
return
if last_num > 0:
length_list = len(list_1)
length_list = last_num - length_list + 3
if length_list > 0:
string = list_1[1:2] + list_1[3:] + '0' * length_list
elif length_list < 0:
string = list_1[1:2] + list_1[3:length_list] +'.' + list_1[length_list:]
else:
string = list_1[1:2] + list_1[3:]
else:
last_num = abs(last_num) - 1
string = '0' + '.' + '0' * last_num + list_1[1:2] + list_1[3:]
return string
def out_come(my_list):
if flag_1 == '+':
print(my_list)
else:
print(flag_1 + my_list)
s = re.compile("E")
list = input()
my_list = s.split(list)
list_1 = my_list[0]
list = my_list[1]
flag_1 = list_1[0]
list_1 = get_out()
out_come(list_1)
博客主要讨论了在Python中处理科学计数法时遇到的逻辑问题,包括指数正负判断、小数位数与指数关系的处理,以及如何避免程序运行超时。作者在解决问题过程中提及了对复杂度的优化,如避免使用多个while循环,以及在处理特殊情况时的遗漏,如未考虑‘+1.234E+3’这样的输入。通过学习他人代码,作者找到了错误并成功修复。

371

被折叠的 条评论
为什么被折叠?



