数论-扩展欧几里德算法

找出一对整数(x,y),使得ax+by=gcd(a,b)。注意,这里的x和y不一定是正数,也可能是负数或者0.例如,gcd(6,15)=3,6*3-15*1=3,其中,x=3,y=-1.这个方程还有其他解,如x=-2,y=1。

输入:整数a,b

输出:整数x,y。

运行结果:

用数学归纳法并不难证明算法的正确性。此处略去。

注意在递归调用时,x和y的顺序变了,而边界也是不难得出的gcd(a,0)=1*a - 0*0 = a.

这样,唯一需要记忆的是y-=x*(a/b).

void gcd(int a, int b, int &d, int &x, int &y)
{
    if(!b)   //ax + by = a = gcd(a, b);
    {
        d = a;  //最大公约数 
        x = 1;
        y = 0;
    }
    else
    {
        // x1=y2; y1=x2-y2(a/b)
        gcd(b, a%b, d, y, x);
        y -= x*(a/b);
    }
}

上面求出了ax+by=gcd(a,b)的一组解(x1,y1),那么其他解呢?任取另外一组解(x2,y2),则ax1+by1 = ax2+by2(它们都等于gcd(a,b))

。变形得a(x1-x2) = b(y2-y1)。假设gcd(a,b)=g,方程左右两边同时除以g,的a'(x1-x2) = b'(y2-y1)。其中a'=a/g,b'=b/g。注意,此时a‘和b’互素,因此x1-x2一定是b'的整数倍。设它为kb‘。计算的y2-y1=ka'。注意,上面的推导过程并没有用到"ax+by的右边是什么",因此得出如下结论:

设a,b,c为任意整数。若方程ax+by=c的一组整数解为(x0,y0),则它的任意整数解都可以写成(x0+kb',y0-ka'),其中a'=a/gcd(a,b),b'=b/gcd(a,b) k 取任意整数.

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值