【论文阅读】Generation of high definition map for accurate and robust localization
(生成高清晰度地图,实现准确、鲁棒的定位)
摘要
提出了一种生成高清晰地图的框架,并利用高清晰地图实现精确、鲁棒的定位。提出了一种基于迭代逼近的Lanelet2格式高清地图生成方法。提出了一种基于结构一致性和特征相似性的特征关联方法,将高清地图中的元素与实际检测到的元素进行匹配。高清图的特征关联结果用于校正光检测和测距里程计中的横向漂移。最后给出了一些实验结果,验证了自动驾驶定位的可靠性和准确性。
1.介绍
本文的主要工作集中在两个方面:首先,提出了一种计算机辅助生成高清晰地图的方法。目前,大多数论文在进行车道线拟合时,都认为车道线在二维平面上。这些方法在立交桥和涵洞等场景中几乎不可用[13-16]。为了扩大高清地图的使用范围,有必要开发3D拟合车道线。其次,提出了一种基于生成的高清地图和已有里程计的精确多传感器融合定位方法。值得注意的是,如果定位方法仅基于里程计,则会产生累积误差。因此,需要一个与误差无关的位置约束来校正估计的位置。本文的贡献总结如下:
- 提出了一种基于迭代逼近的车道线三维曲线生成方法。该算法拟合的空间参数化曲线全局连续,比二维曲线方程具有更广泛的适用性。该方法不仅有效地减少了样条曲线的参数个数,而且保证了曲线的精度。
- 我们将车道分开,并将它们存储在特定的高清地图格式中,而不是将它们作为语义信息保存在点云中。针对高清地图采样点不均匀的问题,提出了一种基于数值积分的方法来实现在弧长范围内的均匀采样。
- 我们提出了一种将高清地图中的元素与感知结果中的其他元素相关联的方法。考虑匹配时间、相似度和局部结构一致性,构建了高清地图的基本要素和完整特征关联,并给出了各自的相似度评价指标。
- 我们将高清地图融合的定位问题转化为图优化问题。基于高清晰地图和感知图像特征关联结果,对里程计定位结果应用横向约束,获得准确、低成本的定位结果。
2.相关工作
2.1.车道曲线方程的生成
Chen等[14]证明了**三次埃尔米特样条(CHS)**可以同时描述线段、弧曲线和仿线,是拟合车道线的良好选择。CHS至少具有强于传统分段线性折线表示的连续性,在描述车道曲线方面更为准确。它的均匀形式允许使用特征点序列参数化拟合任何车道曲线。Jo等[15]提出了一种基于最优平滑技术的b样条拟合方法。zhang等[16]提出了一种车道线拟合方法,该方法考虑车辆模型生成全局的、匹配行驶轨迹的连续车道线。Gwon等[17]提出了一种序列逼近的分段多项式拟合方法,该方法在计算效率和可修改性方面优于𝐵-spline和clothoid曲线。
2.2. 现有高清地图格式
2.3. 多传感器融合定位
2.4. 基于高清地图的定位
3.系统概括
该系统由三部分组成。
第一部分是车道线拟合。讨论了一种结合地面方程的反车道线透视映射方法。提出了一种基于迭代逼近的分段CHS曲线拟合方法。该方法既满足了数据存储量小的要求,又保证了通道的连续性。
**第二部分是高清地图的后期处理。**HD地图所需的数据结构和坐标系进行了讨论。**采用数值积分法计算参数曲线弧长。**这样,将参数尺度等距曲线转化为弧长尺度中间曲线,使曲线结构更加均匀。
**第三部分是基于高清地图和里程计的融合定位方法。**研究了当前高清地图信息与摄像机实时感知特征之间的特征关联方法。针对高清图中不同的基本要素,制定了各自的相似度评价指标。根据累积置信度平滑,将结果在时间尺度上进行平滑,转化为图优化问题。最后,使用滑动窗口方法和改进的关键帧选择减少了图形优化的计算量。
KITTI数据集用于自动驾驶和移动机器人的研究[29]。本研究仅使用2号相机和KITTI数据集的同步和校正数据。因此,我们在KITTI原有定义的基础上增加了一些定义。**以摄像机2为原点建立摄像机坐标系,以车辆前后轴中点(四个车轮中间)与地面的垂直线交点为车辆中心点,建立base_link坐标系。**𝑥-axis正方向沿车辆行驶路径向前,𝑦axis指向车辆行驶方向左侧,𝑧-axis垂直向上。车辆的坐标系统如图1所示。
4.高清地图生成
我们讨论了使用现有实验数据中已有的车道线检测结果生成高清地图,测试图像来自KITTI数据集[29]。图2显示了一个车道线数据的示例。车道线数据以线段的形式存储。每段是一条由几个点组成的车道。
4.1. 反透视映射与地面方程
摄像机的投影方程为:
式中𝑷c =[𝑋c,𝑌c,𝑍c] T为摄像机坐标系下点的坐标,𝑲为摄像机的固有矩阵。𝒁c为摄像机坐标系中实际接地点的𝑧-axis坐标。𝑷b为车辆坐标系中某点的坐标,𝑷uv =[𝑢,𝑣]T为像素坐标系中某点的坐标,𝑻cb为摄像机到车辆坐标系的变换矩阵。
我们计算LiDAR坐标系下的地面方程如下[30]:
式中𝒏l为LiDAR坐标系中与地平面垂直的向量,𝑻lc为LiDAR到相机坐标系的变换矩阵。𝑷l是雷达坐标系统中的点。𝒏c是相机坐标系中垂直于地平面的向量。
结合(1)(2),
其中𝑴是:
𝐷的物理含义是平面在法向量方向上的偏移量(经过法向量的归一化后)。在摄像机坐标系中,地面方程中的𝐷不能为零。因此,可以假设𝑴是满秩的。
由于矩阵𝑴随地面方程而变化,因此必须为每个后续帧计算其逆矩阵,并且程序开销很大。由块矩阵的性质,我们可以进一步得到:
由式(5)可知,程序在初始化阶段只需要计算𝑲−1一次。然后,只需在程序的每个后续帧中计算n ’ T和𝐷−1。
4.2. 分段三次hermite样条拟合
CHS曲线是由起点𝑝0、终点𝑝1、起点𝑑0的斜率和终点𝑑1的斜率决定的三次多项式曲线。参数三次多项式曲线的方程定义为:
(6)表示CHS曲线𝑖-th段的方程。CHS曲线具有全局的连续性[16]。将曲线的𝑖-th段拟合到操作端点的问题可以转化为最小化问题:
很明显,在曲线的每一段中,除了第一段,只需要拟合端点切向量di+1。(7)中,拟合参数曲线方程需要同时考虑多个最小化问题。
基于渐近逼近的思想,提出了一种分段空间CHS曲线的拟合算法,如算法1所示。该算法的主要思想是循环优化d𝒊,d𝒊+1和t。也就是说,在优化一个参数的同时保持其他两个参数不变,直到每个参数都优化𝑁次。为了实现全局的连续性,后续曲线起始点的切向量采用前一段的端点切向量。在本文中,Fi(d𝒊)是指其他量保持不变,仅改变d𝒊,其他变量亦是如此。本文中,优化器采用L-BFGS-B[31]。
基于渐近逼近的CHS曲线拟合
传统的分段三次Hermite插值多项式(piecwise cubic Hermite interpolation polynomial, PCHIP)[32]算法每两个点拟合一组有四个参数的曲线,因此需要拟合的参数数量随着采样点数量的增加呈指数增长。本节提出的CHS曲线拟合算法的渐近逼近,在曲线拟合方程中加入若干个采样点作为约束项,在保证曲线尽可能接近剩余采样点的同时,可以有效地减少参数总数。如图3所示,灰线为实际曲线,红线由20个采样点组成,蓝、绿线为本研究算法拟合的曲线。在图3中,蓝线和绿线之间平滑而连续的连接是很明显的。这表明,在扰动较严重的情况下,本研究算法的结果仍然可以保证一定的精度。该精度满足车道线拟合的需要。
4.3. 十字路口实施
考虑到部分道路禁止左转或右转,通过几何关系来确定交叉口是不可行的。在本研究中,我们使用车辆行驶轨迹信息来评估交叉口连接。车辆行驶轨迹叠加在车道点集合上。当车辆行驶路线附近的车道点小于某一阈值时,认为交叉口在该点。
交叉路口(称为虚拟车道)CHS曲线方程的参数可以通过出发车道的终点及其切向量与进入车道的起点及其切向量相结合来确定。即为方程的虚拟通道在这个十字路口,十字路口的车道线的方程FI满足FI = F(𝒑𝑝𝑟𝑒𝑣,𝒑𝑛𝑒𝑥𝑡,𝒅𝑝𝑟𝑒𝑣,𝒅𝑛𝑒𝑥𝑡,𝑡),在𝒑𝑝𝑟𝑒𝑣和𝒑𝑛𝑒𝑥𝑡开始巷的端点坐标和目标车道的起点坐标,分别𝒅𝑝𝑟𝑒𝑣和𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝑑𝑛𝑒𝑥𝑡端点的切向量开始巷和目标车道的起点切向量。
4.4. 曲线弧长均衡
在Lanelet2中,使用一系列点来描述车道线。这种存储方法有一些优点;经过一些处理的路径规划算法可以使用这个点序列。除了手工调整编辑高清地图外,还必须对点序列进行操作,不能对参数化曲线****进行操作。相反,一些场景需要对曲线进行全局平滑**,例如车道可视化绘图。
因此,本研究将车道参数和点序列存储在地图文件中。优化参数𝑡后的曲线方程不具有物理意义。为了使车道各段采样点间距一致,需要计算曲线的弧长,并利用弧长重新提取等距采样点。
CHS弧长可由下式计算:
(9)为椭圆积分,用普通方法难以计算。本研究采用Gauss-Kronrod正交法[33]简化积分计算过程。
我们使用G7-K15方法,一个7点Gauss规则和一个15点Kronrod规则,将其应用于(9),并使用积分变换的上下限规则计算从𝑡0到𝑡1的弧长:
(10)可用于计算车道曲线的弧长,不仅可用于等距采样,还可用于交叉口转向场景。弧长还可以用来计算曲率,方便规划。
5.基于高清地图的定位
虽然基于迭代最近点(ICP)[35]、正态分布变换(NDT)[36]等方法的点云图重定位非常有效,但超大的点云图成为影响实际使用的主要挑战。高清地图包含各种语义特征,而车道线和交通标志在白天和晚上都有很好的识别能力。探索高清图与IMU相结合的全局定位方法,需要解决两个问题。首先,高清地图中的元素与使用其他传感器检测到的元素相关联。其次,根据特征关联结果估计姿态;
5.1.重投影
重投影是指根据当前估计的姿态,将三维空间中对应点的坐标投影回像素平面。重投影与实际像素坐标之间的误差称为重投影误差,通常用作评估姿态的指标。基于车道在地图上的位置,将已知的高清地图先验知识结合摄像机的内在参数和外在参数投影到摄像机图像上。姿态度量的评估是通过将先验映射元素的位置与匹配感知结果的坐标进行差分来获得的。理想情况下,两者之间的距离应该为零。采用非线性优化方法对相机姿态进行优化,使该评价指标最小化,从而计算出最优的车辆姿态。
首先,参照先验车辆姿态𝑻bw,结合(3),表示一个在世界坐标系中的特征点𝑷w在像素平面坐标系中的坐标𝑷uv能被得到。
式中𝑻cb为车辆坐标系到摄像机坐标系的变换矩阵,𝑻bw为世界坐标系到车辆坐标系的变换矩阵,𝑍𝑐为特征点在摄像机坐标系中的多维轴坐标,𝐾为摄像机内部参数矩阵。根据(11),将高清地图中的元素投影到像素平面中。
5.2.特征关联
要使用高清地图进行定位,需要知道高清地图上传感器检测到的物体的位置。这一步称为特征关联。特征关联定位与相机图像中检测到的特征相匹配的高清地图元素。正确选择地图特征可以显著提高定位效果。在本研究中,我们选择车道线元素作为地图特征。这是因为车道线特征容易检测,持续时间长,反射特性好,在夜间等环境下检测成功率高。将地图元素重新投影到像素平面(地图特征),计算检测到的元素(感知特征)之间的距离,并用于评估定位结果。
感知特性𝑥定义为组成的𝑥𝑙和形状𝑥𝑏,例如𝑥={𝑥𝑙,𝑥𝑏}。对于车道线感知特征,同一路段上的车道斜率差非常小。有可能在高清地图重投影过程中错误地包含了远处的车道。为了更好地区分同一路段上的车道线,我们将形状定义为由一系列车道线点𝑥𝑠及其斜率𝑥𝑑组成:𝑥𝑏={𝑥𝑠,𝑥𝑑}
基于局部结构的一致性,计算地图特征重投影误差。然后进行特征与高清地图感知特征的粗匹配。如果重投影误差太大,则认为地图与感知特征之间的差距太大,不会进行匹配和优化。
只有当误差小于某一阈值时,算法才会继续。将地图特征定义为𝑦,给定相机感知特征𝑥,考虑一个特征属于某一类的置信度𝑥𝑐,其概率为目标检测模块给出的概率为P(𝑥𝑙| 𝑦𝑙)。假设形状检测噪声服从正态分布,与**计算特征的似然概率P(𝑥| 𝑦)**相结合。
对于车道线,定义该形状的似然概率值P(𝑥b| 𝑦b)。
在𝑦𝑑和𝑥𝑑的斜坡车道线在地图功能和感知特性,¯𝑥𝑝和¯𝑦𝑝是在地图特征与感知特征中𝑥轴上的车道线采样点的平均坐标。𝜎d为巷道斜率的方差。如果似然概率P(𝑥| 𝑦)是更大于某一阈值Th的话,则将该地图特征与感知特征视为对同一特征的粗匹配𝑧𝑖𝑗={𝑥𝑖,𝑦𝑗}。
考虑到地图结构的一致性,感知特征结构应该与地图特征结构相似。经过粗匹配后,计算每个地图特征之间的两个距离和匹配的两个感知特征之间的距离,如图4所示。这两组距离被称为地图特征的结构特征和感知特征的结构特征。
结构特征的差异被用来衡量给定帧的感知特征结构和映射特征结构之间的相似性。
定义匹配矩阵D∈R N𝑛×N𝑚,其中**元素𝑑𝑖𝑗= 1表示感知特征𝑥𝑖匹配映射特征𝑦𝑗;否则,𝑑𝑖𝑗= 0。**定义在两个特性对𝑑𝑖𝑗和𝑑𝑘𝑙,边缘𝑒𝑥(𝑖,𝑘)表示知觉特性之间的水平距离𝑥𝑖和𝑥𝑘,同样的,边缘𝑒𝑦(𝑗𝑙)表示地图特性之间的水平距离𝑦𝑗和𝑦𝑙。然后,感知特征结构与地图特征结构在某一帧内的相似度𝑠𝑡如(14)所示。
其中,𝑁𝑛 和𝑁𝑚分别为重投影后的感知特征和映射特征的总数。𝑑𝑖𝑗𝑑𝑘𝑙表示该边缘对于地图特征和感知特征都存在的要求。N𝑒是满足上述要求的所有可能边的数目。
考虑到匹配数量、结构一致性和重投影误差,特征匹配问题可以表示为一个多阶映射匹配问题。
其中,倘使N𝑑是特征匹配对的数目。𝑃(𝑥𝑖|𝑦𝑗)和𝑠可以被(12)和(15)计算。𝜔1,𝜔2,𝜔3为权重参数。
5.3. 因子图优化
定义已知传感器测量𝑍={𝑧𝑖}𝑁𝑧𝑖= 1,地图特性测量𝑌={𝑦𝑗}𝑁𝑚𝑗= 1,在𝑙𝑗∈R 3和姿态估计𝑋={𝑥𝑡}𝑁𝑥𝑡= 1,在𝑥𝑡∈SE(2)。基于高清地图的定位可以表示为最大后验概率(MAP)估计如下:
地图估计可以分解为两个子问题:特征关联和姿态估计
在感知测量值和映射特征测量值之间创建一个特征关联𝐷={𝑑𝑡}
得到的公式如下:
我们使用因子图来优化融合里程计z𝑜,并从特征匹配中映射特征测量值z𝑙。直接求解后验分布比较困难,在匹配关系𝐷´已经估计的情况下,利用贝叶斯定理,(17)可以表示为
假设噪声满足正态分布。里程误差优化项可定义为:
式中Ω𝑜𝑘为信息矩阵,测程误差𝑒𝑜(𝑥𝑝𝑘−1,𝑥𝑝𝑘,z𝑜𝑘)可以表示为对前一帧的位姿𝑥𝑝𝑘−1进行变换z𝑜𝑘后的当前位姿𝑥𝑝𝑘T的差值:
地标误差优化项可定义为:
其中,地标误差可以用感知特征与地图特征的𝑥-axis坐标之差表示:
地图误差优化项可以描述为
其中,r(𝑐)为反卡方分布函数,𝑟为半径,𝑚𝑘为𝑘th帧图特征所在位置。
当某条边的误差较大时,上式中马氏距离的增长率较大。因此,算法将尝试优先调整与这条边相关的估计,而忽略其他优势的影响。本研究使用Huber核函数𝐻(𝑥)来调整误差项,减少错误数据的影响。
结合式(19)、式(21)、式(23),得到位姿优化函数如下:
6.实验与结果
我们通过一系列实验验证了所提出的定位算法。首先,对KITTI数据集进行逐步简化,拟合出基于不同车道特征的单参数曲线;基于本文提出的三次埃尔米特样条曲线拟合算法,计算了每条车道线的曲线方程。然后,通过交叉补齐和手动调整元素,生成与KITTI数据集相对应的高清地图。最后,在原始里程计的基础上,利用先验的高清地图信息和提出的融合高清地图定位算法进一步约束车辆的横向位置。
6.1.曲线拟合
为了拟合车道线,我们必须提取车道点。第一步采用地平面拟合(ground plane fitting, GPF)算法[30]计算地面方程。根据式(5)计算图像上车道线在相机坐标系𝑷c中的坐标。以GNSS/INS系统的定位数据作为车辆位置真值𝑷b,将每帧的车道线识别结果进行拼接,将具有不同车道线的同一路段作为不同类别存储。StatisticalOutlierRemoval (SOR)过滤器[38]用于过滤一些误检的异常值。这一步还将一些检测较差的路段一起排除,这些路段在不同的车道线地图上以不同的颜色反映出来,如图5(a)所示。
第二步使用基于密度的空间聚类应用与噪声(DBSCAN)[39]聚类,将间隔较近的点(距离小于某一阈值)划分到同一个聚类中。这个搜索阈值需要略大于车道间距,小于交叉口相邻车道之间的距离。这使得聚类算法能够搜索相邻车道,并确保交叉口区域可以用于分割。由于点云数量较多,采用KD-Tree搜索算法代替传统的遍历搜索。通过DBSCAN聚类,将车道线划分为19个区域,如图5(b)所示。
第三步,利用第一步记录的同一道路不同车道信息,通过DBSCAN聚类进行车道划分。然后根据每个路段的类别属性划分车道,如图5©所示。这里为每个通道分配一个唯一的ID,以便后续的通道完成。
曲线拟合过程如图6所示,其中左上、中、右分别为X-Y、X-Z、Y-Z视图,说明拟合效果较好。空间曲线能较好地描述原车道线点集。
图6中间的子图为参数t的拟合效果,表示各参数𝒕i的误差随迭代次数的变化情况。经过4次迭代,大部分参数𝒕i的误差减小到1.0以下。下面的子图显示了迭代计算过程中总误差的变化情况,经过两次迭代后误差是稳定的。该车道线拟合效果的三维视图如图7所示。
本研究基于车辆路径来确定交叉口的连接,以解决道路上可能没有左转弯或右转弯的问题。交叉口拓扑是通过组合分配给每个车道的id来选择的。该算法完成了交叉口虚拟车道线的绘制。
交点完成前后的结果如图8(a)所示。整个区域的最终车道如图8(b)所示,整体车道配合度相对较好。要创建高清地图,还需要进一步手动调整车道曲线,并补充地图上的其他元素,如人行道和各种交通标志。
6.2. 高清地图制作
将车辆的起点定义为地图原点,并记录原点的GPS坐标(48.982 545°W, 8.390 366°E)。为了获得更高的投影精度,本研究采用了欧洲ETRS89坐标。坐标系参数如表1所示。
我们将表1中ETRS坐标系定义的地球椭球体的长轴平坦化导入到geoiclib地理坐标库中进行计算。初始点在MGRS地理坐标系中的坐标为32UMV-55394.36-25694.44,其中区域号为32UMV,向东距离为55394.36 m,向北距离为25694.44 m,网格北角为−0.5◦。
如图8(b)所示的车道线和初始点的MGRS坐标存储在Lanelet2文件中。
用JOSM专业地图软件打开Lanelet2文件后,加载Mapbox卫星地图作为底图。如图9所示,转换后的坐标可以被专业制图软件正确识别和显示。道路的形状与卫星地图上的道路重叠。
图8(b)显示了一些交叉口拟合不良。这些元素,如停车线和人行横道,没有被识别。因此,我们手动调整了一些错误遗漏的元素,对车道形状进行了微调,并增加了行人过路标志和一些交通标志。图10显示了一些十字路口人工标注的效果。在调整好车道线后,使用第四部分的方法重新对该车道进行曲线方程的修正。最后,使用数值积分法对车道曲线进行优化,以近似弧长等距采样。
6.3.定位实验
在前期准备工作的基础上,下一步是进行定位实验。使用式(11)将高清地图的点投影到图像坐标系中。考虑到摄像头图像方向上的实际车道,只保留图像下半部分的车道,如图11所示。由于图中虚拟车道(蓝色)不应参与位置姿态的匹配和优化,因此只保留实际车道(红色)进行车道匹配和位置优化。两侧的水平红色车道是附近道路的投影,而不是当前道路的投影。该算法按半径过滤可能的车道,然后将它们投射到图像中。匹配过程中涉及的最终通道如图12所示。
由于KITTI数据集中的惯性制导测程相对准确,不能很好地反映定位算法的效果。在本文中,我们使用LOAM[22]算法作为激光测程,使用第五部分提出的方法将HD地图与实际检测结果进行匹配,得到的匹配结果作为路线图约束加入到Georgia Tech Smoothing and Mapping (GTSAM)[40]优化中。为了检验融合定位的效果,将本研究设计的融合高清地图定位算法与实际值进行对比,如图13所示。
学术界通常用于评估轨迹的度量是均方根偏差(RMSE):
绝对位姿误差(APE)只考虑平移误差:
本研究使用EVO[41]工具包对所提出的定位算法的轨迹误差进行评估,结果如表2所示。
图13显示了所提算法与LOAM算法效果的比较。与纯LOAM测距仪相比,本文提出的定位算法有更显著的改进。
正如我们所看到的,在大多数情况下,结合高清地图的定位效果的误差仍然很小。在道路的左上角可以看到一个水平偏移,那里没有高清地图。由于最左边的道路很长,并且具有特定的曲率,因此需要对融合的高清地图的正向定位进行改进。激光雷达里程表在道路的左下方有很大的偏移,所以本研究开发的算法也有较大的偏移。这个问题可以通过随后考虑添加更多的道路元素来解决。
6.4. 鲁棒性测试
现在,我们将本文方法的定位性能与其他方法进行了比较。由于实验场景中的道路两旁都是树木,激光雷达从茂密的树叶中提取的特征非常嘈杂。在实验场景中,GPS定位是正确的,因为GPS信号完全覆盖了实验数据集。我们把这里的GPS测量值当作地面真实值。图14(b)为本文方法与其他方法在本案例中的定位结果。LIOM缺乏一种预处理方法来过滤出可靠的特征,因此其结果与正确的结果相差甚远。不令人满意的LIO-SAM结果是由于不可靠的特征,严重影响关键帧之间的匹配。与其他方法相比,本文方法可以获得更准确的结果。
7.总结
本文提出了一种基于迭代逼近的车道线三维曲线生成方法。针对高清地图中采样点不均匀的问题,提出了一种基于数值积分的方法来实现在弧长范围内的均匀采样。基于高清地图与感知图像的特征关联结果,将横向约束应用于里程表定位结果,获得准确、低成本的定位结果。实验结果表明,该方法能够生成高清晰地图,实现高精度定位。未来的工作将尝试考虑车道线的横向序列号进行聚类。较大的阈值更容易聚类到具有相同序列号的车道点上。降低了不同序号车道点的半径阈值,使聚类能够沿车道线方向聚类,解决了车道线间断的问题。为了提高该方法的实用性,我们将在未来继续探索更多道路元素的检测、复杂路段(如交通圈)拓扑关系的生成以及交通标志和车道的自动关联方法。该系统使用的主要传感器是激光雷达和摄像头,它们对雨雪遮挡非常敏感。因此,现有系统在雨雪环境下的鲁棒性不强。在后续工作中,借助图形化优化框架,我们可以方便地在位置地图中添加GPS测量约束。这样可以在一定程度上克服雨雪环境对系统的影响。多云天气仍然是GPS定位系统面临的重要挑战之一。在未来工作中,我们将增加运动学模型约束来改善GPS定位结果。