(Redis学习笔记):Redis解决方案

目录

解决方案

缓存预热

缓存雪崩

缓存击穿

缓存穿透

性能指标监控

解决方案

缓存预热

  • 现象:服务器启动后迅速宕机
  • 问题排查
    • 1. 请求数量较高
    • 2. 主从之间数据吞吐量较大,数据同步操作频度较高
  • 解决方案
    • 前置准备工作:
      • 1. 日常例行统计数据访问记录,统计访问频度较高的热点数据
      • 2. 利用LRU数据删除策略,构建数据留存队列
        • 例如:storm与kafka配合
    • 准备工作:
      • 1. 将统计结果中的数据分类,根据级别,redis优先加载级别较高的热点数据
      • 2. 利用分布式多服务器同时进行数据读取,提速数据加载过程
      • 3. 热点数据主从同时预热
    • 实施:
      • 1. 使用脚本程序固定触发数据预热过程
      • 2. 如果条件允许,使用了CDN(内容分发网络),效果会更好
  • 总结
    • 缓存预热就是系统启动前,提前将相关的缓存数据直接加载到缓存系统。
      • 避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!

缓存雪崩

【数据库服务器崩溃(1)】

  • 1. 系统平稳运行过程中,忽然数据库连接量激增
  • 2. 应用服务器无法及时处理请求
  • 3. 大量408,500错误页面出现
  • 4. 客户反复刷新页面获取数据
  • 5. 数据库崩溃
  • 6. 应用服务器崩溃
  • 7. 重启应用服务器无效
  • 8. Redis服务器崩溃
  • 9. Redis集群崩溃
  • 10. 重启数据库后再次被瞬间流量放倒

【问题排查】

  • 1. 在一个较短的时间内,缓存中较多key集中过期
  • 2. 此周期内请求访问过期的数据,redis未命中,redis向数据库获取数据
  • 3. 数据库同时接收到大量的请求无法及时处理
  • 4. Redis大量请求被积压,开始出现超时现象
  • 5. 数据库流量激增,数据库崩溃
  • 6. 重启后仍然面对缓存中无数据可用
  • 7. Redis服务器资源被严重占用,Redis服务器崩溃
  • 8. Redis集群呈现崩塌,集群瓦解
  • 9. 应用服务器无法及时得到数据响应请求,来自客户端的请求数量越来越多,应用服务器崩溃
  • 10. 应用服务器,redis,数据库全部重启,效果不理想

【问题分析】

  • 短时间范围内
  • 大量key集中过期

【解决方案(道)】

  • 1. 更多的页面静态化处理
  • 2. 构建多级缓存架构
    • Nginx缓存+redis缓存+ehcache缓存
  • 3. 检测Mysql严重耗时业务进行优化
    • 对数据库的瓶颈排查:例如超时查询、耗时较高事务等
  • 4. 灾难预警机制
    • 监控redis服务器性能指标
    • CPU占用、CPU使用率
    • 内存容量
    • 查询平均响应时间
    • 线程数
  • 5. 限流、降级
    • 短时间范围内牺牲一些客户体验,限制一部分请求访问,降低应用服务器压力,待业务低速运转后再逐步放开访问

【解决方案(术)】

  • 1. LRU与LFU切换
  • 2. 数据有效期策略调整
    • 根据业务数据有效期进行分类错峰,A类90分钟,B类80分钟,C类70分钟
    • 过期时间使用固定时间+随机值的形式,稀释集中到期的key的数量
  • 3. 超热数据使用永久key
  • 4. 定期维护(自动+人工)
    • 对即将过期数据做访问量分析,确认是否延时,配合访问量统计,做热点数据的延时
  • 5. 加锁:慎用

【总结】

  • 缓存雪崩就是瞬间过期数据量太大,导致对数据库服务器造成压力
    • 如能够有效避免过期时间集中,可以有效解决雪崩现象的出现(约40%),配合其他策略一起使用,并监控服务器的运行数据,根据运行记录做快速调整。

  • 在一个较短的时间内,缓存中较多的key集中过期

缓存击穿

【数据库服务器崩溃(2)】

  • 1. 系统平稳运行过程中
  • 2. 数据库连接量瞬间激增
  • 3. Redis服务器无大量key过期
  • 4. Redis内存平稳,无波动
  • 5. Redis服务器CPU正常
  • 6. 数据库崩溃

【问题排查】

  • 1. Redis中某个key过期,该key访问量巨大
  • 2. 多个数据请求从服务器直接压到Redis后,均未命中
  • 3. Redis在短时间内发起了大量对数据库中同一数据的访问

【问题分析】

  • 单个key高热数据
  • key过期

【解决方案(术)】

  • 1. 预先设定
    • 以电商为例,每个商家根据店铺等级,指定若干款主打商品,在购物节期间,加大此类信息key的过期时长
    • 注意:购物节不仅仅指当天,以及后续若干天,访问峰值呈现逐渐降低的趋势
  • 2. 现场调整
    • 监控访问量,对自然流量激增的数据延长过期时间或设置为永久性key
  • 3. 后台刷新数据
    • 启动定时任务,高峰期来临之前,刷新数据有效期,确保不丢失
  • 4. 二级缓存
    • 设置不同的失效时间,保障不会被同时淘汰就行
  • 5. 加锁
    • 分布式锁,防止被击穿,但是要注意也是性能瓶颈,慎重
总结
  • 缓存击穿就是单个高热数据过期的瞬间,数据访问量较大,未命中redis后,发起了大量对同一数据的数据库访问,导致对数据库服务器造成压力
    • 应对策略应该在业务数据分析与预防方面进行,配合运行监控测试与即时调整策略,毕竟单个key的过期监控难度较高,配合雪崩处理策略即可。

缓存穿透

【数据库服务器崩溃(3)】

  • 1. 系统平稳运行过程中
  • 2. 应用服务器流量随时间增量较大
  • 3. Redis服务器命中率随时间逐步降低
  • 4. Redis内存平稳,内存无压力
  • 5. Redis服务器CPU占用激增
  • 6. 数据库服务器压力激增
  • 7. 数据库崩溃

【问题排查】

  • 1. Redis中大面积出现未命中
  • 2. 出现非正常URL访问

【问题分析】

  • 获取的数据在数据库中也不存在,数据库查询未得到对应数据
  • Redis获取到null数据未进行持久化,直接返回
  • 下次此类数据到达重复上述过程
  • 出现黑客攻击服务器

【解决方案(术)】

  • 1. 缓存null
    • 对查询结果为null的数据进行缓存(长期使用,定期清理),设定短时限,例如30-60秒,最高5分钟
  • 2. 白名单策略
    • 提前预热各种分类数据id对应的bitmaps,id作为bitmaps的offset,相当于设置了数据白名单。当加载正常数据时,放行,加载异常数据时直接拦截(效率偏低)
    • 使用布隆过滤器(有关布隆过滤器的命中问题对当前状况可以忽略)
  • 3. 实施监控
    • 实时监控redis命中率(业务正常范围时,通常会有一个波动值)与null数据的占比
    • 非活动时段波动:通常检测3-5倍,超过5倍纳入重点排查对象
    • 活动时段波动:通常检测10-50倍,超过50倍纳入重点排查对象
    • 根据倍数不同,启动不同的排查流程。然后使用黑名单进行防控(运营)
  • 4. key加密
    • 问题出现后,临时启动防灾业务key,对key进行业务层传输加密服务,设定校验程序,过来的key校验
    • 例如每天随机分配60个加密串,挑选2到3个,混淆到页面数据id中,发现访问key不满足规则,驳回数据访问
【总结】
  • 缓存穿透访问了不存在的数据,跳过了合法数据的redis数据缓存阶段,每次访问数据库,导致对数据库服务器造成压力
  • 通常此类数据的出现量是一个较低的值,当出现此类情况以毒攻毒,并及时报警。
  • 应对策略应该在临时预案防范方面多做文章。无论是黑名单还是白名单,都是对整体系统的压力,警报解除后尽快移除

性能指标监控

【监控指标】

  • 性能指标:Performance
  • 内存指标:Memory
  • 基本活动指标:Basic activity
  • 持久性指标:Persistence
  • 错误指标:Error

【性能指标:Performance】

【内存指标:Memory】

【基本活动指标:Basic activity】

【持久性指标:Persistence】

【错误指标:Error】

【工具】

  • Cloud Insight Redis
  • Prometheus
  • Redis-stat
  • Redis-faina
  • RedisLive
  • zabbix

【命令】

  • benchmark
  • redis cli
    • monitor
    • showlog

【benchmark】

  • 命令
redis-benchmark [-h ] [-p ] [-c ] [-n <requests]> [-k ]
  • 范例1
redis-benchmark
  • 说明:50个连接,10000次请求对应的性能
  • 范例2
redis-benchmark -c 100 -n 5000
  • 说明:100个连接,5000次请求对应的性能

【monitor】

  • 命令
monitor
  • 打印服务器调试信息
【showlong】
  • 命令
showlong [operator]
  • get :获取慢查询日志
  • len :获取慢查询日志条目数
  • reset :重置慢查询日志

【相关配置】

slowlog-log-slower-than 1000 #设置慢查询的时间下线,单位:微妙
slowlog-max-len 100 #设置慢查询命令对应的日志显示长度,单位:命令数

 

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:白松林 返回首页