目录
计数排序(Counting Sort)
- 之前学习的冒泡、选择、插入、归并、快速、希尔、堆排序,都是基于比较的排序
- 平均时间复杂度目前最低是O(nlogn)
- 计数排序、桶排序、基数排序,都不是基于比较的排序它们是典型的用空间换时间,在某些时候,平均时间复杂度可以比O(nlogn)更低
- 计数排序于1954年由Harold H.Seward提出,适合对一定范围内的整数进行排序
- 计数排序的核心思想
- 统计每个整数在序列中出现的次数,进而推导出每个整数在有序序列中的索引
计数排序 - 最简单的实现
// 找出最大值 int max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } // O(n) // 开辟内存空间,存储每个整数出现的次数 int[] counts = new int[1 + max]; // 统计每个整数出现的次数 for (int i = 0; i < array.length; i++) { counts[array[i]]++; } // O(n) // 根据整数的出现次数,对整数进行排序 int index = 0; for (int i = 0; i < counts.length; i++) { while (counts[i]-- > 0) { array[index++] = i; } } // O(n)
- 这个版本的实现存在以下问题
- 无法对负整数进行排序
- 极其浪费内存空间
- 是个不稳定的排序
计数排序 - 改进思路
- 逆序遍历可以保持稳定性
- 依次类推
改进版代码实现
// 找出最值 int max = array[0]; int min = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } if (array[i] < min) { min = array[i]; } } // 开辟内存空间,存储次数 int[] counts = new int[max - min + 1]; // 统计每个整数出现的次数 for (int i = 0; i < array.length; i++) { counts[array[i] - min]++; } // 累加次数 for (int i = 1; i < counts.length; i++) { counts[i] += counts[i - 1]; } // 从后往前遍历元素,将它放到有序数组中的合适位置 int[] newArray = new int[array.length]; for (int i = array.length - 1; i >= 0; i--) { newArray[--counts[array[i] - min]] = array[i]; } // 将有序数组赋值到array for (int i = 0; i < newArray.length; i++) { array[i] = newArray[i]; }
- 最好、最坏、平均时间复杂度:O(n+k)
- 空间复杂度:O(n+k)
- k是整数的取值范围
- 属于稳定排序
计数排序 - 对自定义对象排序
Person[] persons = new Person[] { new Person(20, "A"), new Person(-13, "B"), new Person(17, "C"), new Person(12, "D"), new Person(-13, "E"), new Person(20, "F") }; // 找出最值 int max = persons[0].age; int min = persons[0].age; for (int i = 1; i < persons.length; i++) { if (persons[i].age > max) { max = persons[i].age; } if (persons[i].age < min) { min = persons[i].age; } } // 开辟内存空间,存储次数 int[] counts = new int[max - min + 1]; // 统计每个整数出现的次数 for (int i = 0; i < persons.length; i++) { counts[persons[i].age - min]++; } // 累加次数 for (int i = 1; i < counts.length; i++) { counts[i] += counts[i - 1]; } // 从后往前遍历元素,将它放到有序数组中的合适位置 Person[] newArray = new Person[persons.length]; for (int i = persons.length - 1; i >= 0; i--) { newArray[--counts[persons[i].age - min]] = persons[i]; } // 将有序数组赋值到array for (int i = 0; i < newArray.length; i++) { persons[i] = newArray[i]; } for (int i = 0; i < persons.length; i++) { System.out.println(persons[i]); }
基数排序 (Radix Sort)
- 基数排序非常适合用于整数排序(尤其是非负整数),这里只介绍对非负整数进行基数排序。
- 执行流程:依次对个位数、十位数、百位数、千位数、万位数…进行排序(从低位到高位)
- 个位数、十位数、百位数的取值范围都是固定的0~9,可以使用计数排序对它们进行排序。
基数排序代码实现
public class RadixSort extends Sort<Integer> { @Override protected void sort() { // 找出最大值 int max = array[0]; for (int i = 1; i < array.length; i++) { if (array[i] > max) { max = array[i]; } } // 个位数: array[i] / 1 % 10 = 3 // 十位数:array[i] / 10 % 10 = 9 // 百位数:array[i] / 100 % 10 = 5 // 千位数:array[i] / 1000 % 10 = ... for (int divider = 1; divider <= max; divider *= 10) { countingSort(divider); } } protected void countingSort(int divider) { // 开辟内存空间,存储次数 int[] counts = new int[10]; // 统计每个整数出现的次数 for (int i = 0; i < array.length; i++) { counts[array[i] / divider % 10]++; } // 累加次数 for (int i = 1; i < counts.length; i++) { counts[i] += counts[i - 1]; } // 从后往前遍历元素,将它放到有序数组中的合适位置 int[] newArray = new int[array.length]; for (int i = array.length - 1; i >= 0; i--) { newArray[--counts[array[i] / divider % 10]] = array[i]; } // 将有序数组赋值到array for (int i = 0; i < newArray.length; i++) { array[i] = newArray[i]; } } }
- 最好、最坏、平均时间复杂度:O(d ∗ (n + k)) ,d 是最大值的位数,k 是进制
- 空间复杂度:O(n + k),k 是进制
- 基数排序属于稳定排序
基数排序-另一种思路
- 复杂度与稳定性
- 空间复杂度是 O(kn + k) ,时间复杂度是 O(dn)
- d 是最大值的位数,k 是进制
桶排序(Bucket Sort)
- 执行流程:
- ① 创建一定数量的桶(比如用数组、链表作为桶)
- ② 按照一定的规则(不同类型的数据,规则不同),将序列中的元素均匀分配到对应的桶
- ③ 分别对每个桶进行单独排序
- ④ 将所有非空桶的元素合并成有序序列
- 元素在桶中的索引:元素值 * 元素数量
- 实现
- 复杂度与稳定性
- 空间复杂度:O(n + m),m 是桶的数量
- 时间复杂度:
- 桶排序属于稳定排序