解读自监督学习(Self-Supervised Learning)几篇相关paper

本文深入解读了几篇关于自监督学习的论文,探讨了自监督学习如何通过构造预训练任务,如图片相对位置预测和旋转角度预测,来提升模型的无监督学习能力。文中提出的新方法结合了数据增强和多任务学习,通过自蒸馏技术优化模型,以解决测试时间增加的问题。同时,文章分析了不同网络结构和self-supervised任务的组合对性能的影响,并介绍了Google Brain团队的两篇研究,强调了学习率和超参数调节的重要性。
摘要由CSDN通过智能技术生成

 

解读自监督学习(Self-Supervised Learning)几篇相关paper

解读自监督学习(Self-Supervised Learning)几篇相关paper

 

Supervised deep learning由于需要大量标注信息,同时之前大量的研究已经解决了许多问题。所以近期大家的研究关注点逐渐转向了Unsupervised learning,许多顶会包括ICML, NeurIPS, CVPR, ICCV相继出现一些不错的paper和研究工作。

这里主要关注Unsupervised learning一类特定的方法:Self-supervised learning(自监督学习)。自监督学习的思想非常简单,就是输入的是一堆无监督的数据,但是通过数据本身的结构或者特性,人为构造标签(pretext)出来。有了标签之后,就可以类似监督学习一样进行训练。比较知名的工作有两个,一个是:Unsupervised Visual Representation Learning by Context Prediction (ICCV15),如图一,人为构造图片Patch相对位置预测任务,这篇论文可以看作是self-supervised这一系列方法的最早期paper之一;另一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>