baidu_huihui
码龄7年
关注
提问 私信
  • 博客:965,490
    965,490
    总访问量
  • 250
    原创
  • 4,376
    排名
  • 4,907
    粉丝
  • 240
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-01-11
博客简介:

胭脂草的ABC博客

博客描述:
胭脂草的ABC博客
查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    3,060
    当月
    63
个人成就
  • 获得1,574次点赞
  • 内容获得117次评论
  • 获得4,087次收藏
  • 代码片获得34,150次分享
创作历程
  • 132篇
    2024年
  • 18篇
    2023年
  • 5篇
    2022年
  • 45篇
    2021年
  • 134篇
    2020年
  • 108篇
    2019年
成就勋章
TA的专栏
  • Ubuntu18.04
    5篇
  • CUDA
    19篇
  • batch normal
    2篇
  • 虚拟试衣
    3篇
  • 虚拟环境
    3篇
  • anaconda
    4篇
  • win10
    2篇
  • GPU
    12篇
  • Microsoft Visual C++ 14.0
    4篇
  • cuDNN
    4篇
  • yolo
    5篇
  • eclipse
    5篇
  • NLP
    3篇
  • 安装软件
    3篇
  • 国内镜像
    1篇
  • 贝叶斯网络之父Judea Pearl
    2篇
  • openCV
    9篇
  • 权利啊·
  • ROI Pooling
    1篇
  • benchmark 
    2篇
  • ADAS
    1篇
  • TensorFlow2.0
    4篇
  • Neo4j
    1篇
  • MaskR-CNN
    1篇
  • BATCH_SIZE
    1篇
  • 5G
  • ARM64
    2篇
  • DQN
    2篇
  • Cart Pole
    1篇
  • TPU
    2篇
  • time格式化
    1篇
  • SVD
    1篇
  • pip换源
    4篇
  • 论文大全
    1篇
  • TSM
    1篇
  • CVPR
    1篇
  • 论文合集
    1篇
  • DSGN
    1篇
  • SLAM
    1篇
  • ANN
    1篇
  • SNN
    1篇
  • Tianjic
    1篇
  • NAS
    1篇
  • anaconda环境
    4篇
  • 图像分割
    3篇
  • 视频处理
    1篇
  • 细粒度的视觉
  • 镜像安装
    1篇
  • 视频理解
    1篇
  • 语义分割
    3篇
  • 目标检测
    1篇
  • 3D目标检测
    1篇
  • easy_install
    1篇
  • StarGAN
    2篇
  • 自动驾驶
    1篇
  • 感知认知
    2篇
  • 强化学习
    3篇
  • ppo
    1篇
  • 华为源
  • 傅里叶变换
    3篇
  • pysptk
    1篇
  • 语音处理
    1篇
  • librosa
    1篇
  • scikit-image
    1篇
  • llvmlite
    1篇
  • CIFAR-10 
    1篇
  • ubantu
    5篇
  • pydev
    1篇
  • 开发环境配置
    1篇
  • 卸载软件包
  • canberra-gtk-module
  • keras
    1篇
  • 智能交通
    3篇
  • openssl
    1篇
  • 行人检测
    3篇
  • jdk
    2篇
  • yum
    1篇
  • 多模态预训练模型
    2篇
  • 自监督学习
    3篇
  • Spot 机器狗
    1篇
  • 波士顿动力
    1篇
  • yolov5
    1篇
  • SPI、I2C
    1篇
  • PHASEN
    1篇
  • tasNet
    1篇
  • jupyter notebook
    1篇
  • AlphaVideo
    1篇
  • ArcBlock基石项目
    1篇
  • 前向动力学(FK)和反向动力学(IK)
    1篇
  • 标注工具
    1篇
  • fast-rcnn
    1篇
  • 微信小程序支付
    1篇
  • TensorRT
    1篇
  • 数据库
    1篇
  • ShardingJDBC
    1篇
  • paramiko自动化运维
    2篇
  • 命令学习
    5篇
  • linux
    26篇
  • Nginx
    2篇
  • mysql
    11篇
  • python
    9篇
  • AI
    14篇
  • 算法模型
    2篇
  • sharding-jdbc
    1篇
  • 自动化部署
    1篇
  • Docker 
    6篇
  • Kubernetes
    6篇
  • docker
    8篇
  • 程序员
  • 职业规划
  • 贝叶斯
    1篇
  • 大数据
  • Spark
    1篇
  • BERT课程
    1篇
  • centos7
    13篇
  • pip
    4篇
  • 神经网络
    1篇
  • RBF径向基函数
    1篇
  • 过拟合
    1篇
  • 深度学习
    4篇
  • PNN
    1篇
  • chatbot
    1篇
  • Jenkins
    1篇
  • 咨询
  • ansible
  • 手机
  • pytorch
    9篇
  • 自然语言处理
    6篇
  • 人工智能管理平台
    13篇
  • Go语言
    1篇
  • Dubbo
    1篇
  • tensorflow
    5篇
  • 网络安全
    1篇
  • Numpy
    3篇
  • 区块链
    1篇
  • vncserver
    3篇
  • redis
    2篇
  • Tableau
    1篇
  • 程序人生
    2篇
  • 知识图谱
    1篇
  • VMware
    3篇
  • 加密解密算法
    4篇
兴趣领域 设置
  • 大数据
    hiveetl
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CVPR 2023 | OpenGait: 步态识别研究

之上,其包含由七个网络摄像机以 15° 的间隔捕获的 10,307 个往返行走序列的主题(考虑到在同一步行路线上的往返,这总计为 14 个视图),图像大小为 1,280 x 980 像素,帧率为 25 FPS。,其认为基于空间全局信息的步态表示通常会忽略细节,同时基于局部区域的描述符无法捕获相邻部分之间的关系,从而开发了全局和局部卷积层来获取更详细的步态信息。,这是一个基于轮廓的模型,其结构简单,效果鲁邦,无论是在室内还是室外拍摄的测试步行视频均表现优异,可作为进一步研究的新基线(
原创
发布博客 前天 11:24 ·
482 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

janusgraph安装部署

【代码】janusgraph安装部署。
原创
发布博客 2024.10.21 ·
109 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Linux 磁盘配置文件 /etc/fstab 详解

任何硬件设备连接后,操作系统使用硬件,即需要挂载。windows只不过是自动“挂载”了,linux需要手动自己搞。在Linux系统下,例如每次挂载/dev/sr0(光盘设备文件)需要手动使用命令mount。每次计算机重启时,硬盘一般也是被自动挂载的,而自动挂载的信息就记录在/etc/fstab文件中。系统每次启动都会读取/etc/fstab中的配置内容,自动挂载该文件中被记录的设备和分区。/etc/fstab字段含义要挂载的分区或存储设备. 设备名称,LABEL,UUID,伪文件系统名称。
原创
发布博客 2024.10.18 ·
1371 阅读 ·
9 点赞 ·
0 评论 ·
9 收藏

neo4j安装和使用(带网盘下载连接)

Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、企业级的数据库的所有好处。为什么要用两个match再创建呢,因为这样是先查到两个节点,再在两个节点之间创建关系,但是如果直接用create(例如下面这样),就会重新创建两个新的节点。个人理解:Neo4j是一个图数据库,它不同于之前数据库课上学的,以表格形式存储数据的数据库,图数据库使用顶点,边,属性来存储数据。
原创
发布博客 2024.10.16 ·
957 阅读 ·
22 点赞 ·
0 评论 ·
9 收藏

windows下安装、配置neo4j并服务化启动

配置成功后,可以在浏览器中使用http://localhost:7474网址查看数据库,但是前提是得把桌面的应用程序关掉。记住数据库的用户名和密码,一般默认的是:用户:neo4j, 密码:neo4j.登陆后重新设置密码:在浏览器上输入用户:user和密码:xxxxx(这里是我的账户)2.2 配置neo4j-community-3.5.5\conf下的neo4j.conf文件: 将以下红色框框中配置放开注释生效。3.1.以管理员的身份运行命令行,输入neo4j.bat console命令之后;
原创
发布博客 2024.10.15 ·
795 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

ubuntu打包命令

在Ubuntu中,我们可以使用多种命令行工具来打包我们的文件或目录。命令是Linux/Unix系统中常用的归档工具,它可以将多个文件和目录打包成一个文件。是一个用来创建.deb包的工具,deb包是Ubuntu系统中的软件包格式。格式的压缩文件,它也可以将多个文件和目录打包成一个。是你将要创建的deb包的名称。是你将要创建的deb包的名称。是你将要创建的归档文件,是你将要创建的压缩文件,是你想要归档的文件,是你想要归档的目录。是你想要压缩的文件,是你想要压缩的目录。是你想要打包的目录,是你想要打包的目录,
原创
发布博客 2024.09.13 ·
537 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

LXDE lxpanel桌面环境中打开一个终端窗口 lxterminal

您的问题似乎是想要在LXDE桌面环境中打开一个终端窗口。如果是这样,通常有几种方法可以做到这一点。如果你的LXDE桌面环境有一个菜单,你可以通过点击“终端”或类似的选项来打开终端。你可以使用命令行来打开终端。,你可能需要先安装它。请注意,你可能需要以root权限运行这些命令,这可以通过在命令前加上。请根据你的Linux发行版选择正确的包管理器(如。你可以在应用程序菜单中找到终端,并点击打开它。在大多数LXDE桌面环境中,你可以使用。方法三:使用应用程序菜单。不可用,你可以尝试使用。
原创
发布博客 2024.09.13 ·
330 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

YOLO v8 在马赛克增强中加入负样本,解决误检问题

虽然v8支持直接训练“无标签的负样本”(v8中叫做background),但默认方式也只是混进正样本中一起练,这会导致新的误检图得不到充分训练使用本文的“负样本马赛克”功能,可以保证每一轮、每一张图里全都有误检图。能够在较少的训练轮次中,解决漏检问题使用例:比如说你发现你模型把摩托车识别成人,那就把那几张摩托车的图放进neg_dir,练个30轮出来就不会有摩托车误识别的问题了【但要注意,放进neg_dir里的图 绝 对 不 能 有正样本(例如把摩托车误检成人的图里不能出现真的人)。
原创
发布博客 2024.09.03 ·
1173 阅读 ·
8 点赞 ·
0 评论 ·
11 收藏

看你对/etc/fstab文件了解多少?fstab文件详解

如果想把本机上的某个设备(device)挂载上来,写法如:/dev/sda1、/dev/hda2或/dev/cdrom,其中,/dev/sda1 表示第一个串口硬盘的第一个分区,也可以是第一个SCSI硬盘的第一个分区,/dev/hda1表示第一个IDE硬盘的第一个分区,/dev/cdrom 表示光驱。在这个文件下,我们要关注的是它的六个域,分别为:、、 、、、。看你对/etc/fstab文件了解多少?
原创
发布博客 2024.08.28 ·
829 阅读 ·
11 点赞 ·
0 评论 ·
19 收藏

标注神器 | Label-Studio X SAM 半自动化标注

本文将介绍结合 Label-Studio 和 SAM (Segment Anything) 半自动化标注方案,Point2Lablel:用户只需要在物体的区域内点一个点就能得到物体的掩码和边界框标注,Bbox2Label:用户只需要标注物体的边界框就能生成物体的掩码,社区的用户可以借鉴此方法,提高数据标注的效率。SAM (Segment Anything) 是 Meta AI 推出的分割一切的模型。Label Studio 是一款优秀的标注软件,覆盖图像分类、目标检测、分割等领域数据集标注的功能。
原创
发布博客 2024.08.22 ·
1095 阅读 ·
13 点赞 ·
0 评论 ·
16 收藏

python中numpy.concatenate()函数的使用

其中a1,a2,...是数组类型的参数。array([ 1, 2, 3, 11, 22, 33, 44, 55, 66]) #对于一维数组拼接,axis的值不影响最后的结果。>>> np.concatenate((a,b,c),axis=0) # 默认情况下,axis=0可以不写。>>> np.concatenate((a,b),axis=1) #axis=1表示对应行的数组进行拼接。>>> np.concatenate((a,b),axis=-1) #axis=-1表示。
原创
发布博客 2024.08.20 ·
320 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

在Python中使用OpenCV录制视频并保存

这段代码会打开默认摄像头,录制视频,并将其保存为名为"output.avi"的文件。的参数来改变输出文件的格式、帧率和分辨率。按下'q'键可以退出视频录制。当不再需要视频写入对象时,使用。循环读取摄像头的帧,并使用。来创建视频写入对象。
原创
发布博客 2024.08.20 ·
791 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

linux磁盘分区fdisk命令详解及云硬盘挂载实操「建议收藏」

分区是将一个硬盘驱动器分成若干个逻辑驱动器,分区是把硬盘连续的区块当做一个独立的磁硬使用。分区表是一个硬盘分区的索引,分区的信息都会写进分区表。fdisk命令参数介绍:p、打印分区表。n、新建一个新分区。d、删除一个分区。q、退出不保存。w、把分区写进分区表,保存并退出。fdisk /dev/sda 对磁盘/dev/sda进行分区操作fdisk -l 查看当前的磁盘分区信息(主要是分区表信息)
转载
发布博客 2024.08.19 ·
109 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【python基础】python切片—如何理解[-1:],[:-1],[::-1]的用法

在python中,序列是python最基本的数据结构,包括有string,list,tuple等数据类型,切片对序列型对象的一种索引方法,其中每个元素都有对应的位置值,具有正向递增(从0开始),反向递减(-1开始)的属性,根据此可以进行普通索引或切片索引。[ :-5:-2]:k<0,i 默认为-1,即从右往左,步长2,范围从最后一个元素开始到第二个元素。[-1: :-2]:k<0,j 默认为-6,从右往左,步长2,范围从最后一个元素开始到第一个元素。总结:[-1] [:-1] [::-1] [n::-1]
原创
发布博客 2024.08.14 ·
497 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

目标检测yolo格式与labelme标注互相转换及其可视化

yolo目标检测数据采用矩形框进行标注,其标注格式为[cls_id xp yp wp hp],cls_id表示目标所属的类别序号。xp、yp表示目标中心点相对坐标,其中xp等于目标的绝对横坐标除以图像宽度,yp等于目标的绝对纵坐标除以图像高度。wp和hp表示目标的相对宽度和高度,其中wp等于目标的绝对宽度除以图像宽度,hp等于目标的绝对高度除以图像高度。每张图片的标注结果以txt文本文件存储,每一行[cls_id xp yp wp hp]表示一个目标。
原创
发布博客 2024.08.07 ·
440 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

Windows加载模型提示不能实例化PosixPath(cannot instantiate ‘PosixPath‘ on your system)

博主通过修改pathlib.py源码,将PosixPath替换为WindowsPath以解决不兼容问题,确保模型在Windows环境下正常实例化。在 Windows 操作系统下,默认创建的 Path 对象是 WindowsPath 对象,其余Linux,unix 等满足 POSIX规范的操作系统都将被创建为 PosixPath 对象。在Linux环境下训练好了模型,再使用Windows系统加载模型使用报错,原来是使用了PosixPath这个高级库。其中上方注释部分为源码,下方的代码为修改代码。
原创
发布博客 2024.08.07 ·
283 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

批量修改txt标签文件(删除一些类,保留一些类)

若标签中无0类标签,即只有1类标签时,直接删除该文档。原标签有0和1两类,想要删除其中的1类,保留0类。1、将txt文件名修改成从1升序。2、修改txt文档内容。
原创
发布博客 2024.07.29 ·
277 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

python批量修改txt文件内容以更换标签编号

import oselse:c3.close()c2.close()
原创
发布博客 2024.07.29 ·
368 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

当姿态估计算法遇上《本草纲目》,看“刘畊宏男孩”如何驱动虚拟人

为了实现实时和精度的平衡,阿里云视频云在技术上对Bottom-Up方案(先检测出图像中的所有关节点,再判断每一个关节点属于哪一个人,实现步骤是关键点检测到关键点匹配)进行了整体的改进和优化,其预测了两个feature map分支,一个是如肩部关节、肘部关节等关键点未知的预测,另一个是预测两两关键点之间的矢量场,这是用来判断各个关键点属于图中的哪个人,并通过“匈牙利算法”来组装成一个完整的人。在竞技体育界,可以通过监督运动员姿态,创建辅助训练系统,分析运动员的每一时刻的动作,协助运动员找到更好的姿势;
转载
发布博客 2024.07.17 ·
66 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

在quiet splash 后面加(先打空格)nomodeset,然后按F10保存启动即可

编辑打开的文件,找到GRUB_CMDLINE_LINUX_DEFAULT那一行,在后面加上(在quiet splash后打一个空格) nomodeset(保险起见,nomodeset后面加多一个空格),保存,然后在终端输入 sudo update-grub 重启后就OK了!可能是我的系统有两个开机引导(windows上面我也装了个开机引导,所以开机引导了两次(问题的一个根源))二、启动系统后在Grub界面,选择ubuntu系统的那一行,然后按E键,就会进入Grub的编辑状态;可以直接选系统–比较好。
原创
发布博客 2024.06.11 ·
844 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏
加载更多