一、合理设置Map数
map任务数主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。
-
复杂文件增加Map数:
当input的文件比较大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。 -
小文件进行合并:
如果一个任务有很多小文件(远远小于块大小128m),则每个小文件都会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,会造成很大的资源浪费。并且,同时可执行的map数是受限的。#每个Map最大输入大小,决定合并后的文件数 set mapred.max.split.size=256000000; #一个节点上split的至少的大小 ,决定了多个data node上的文件是否需要合并 set mapred.min.split.size.per.node=100000000; #一个交换机下split的至少的大小,决定了多个交换机上的文件是否需要合并 set mapred.min.split.size.per.rack=100000000; #执行Map前进行小文件合并 set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; #在map-only任务结束时合并小文件,默认true SET hive.merge.mapfiles = true; #在map-reduce任务结束时合并小文件,默认false SET hive.merge.mapredfiles = true; #合并文件的大小,默认256M SET hive.merge.size.per.task = 268435456; #平均文件大小,是决定是否执行合并操作的阈值,默认16000000。当输出文件的平均大小小于 该值时,启动一个独立的map-reduce任务进行文件merge SET hive.merge.smallfiles.avgsize = 16000000;
二、合理设置Reduce数
Reduce的个数对整个作业的运行性能有很大影响。在设置reduce个数的时候需要考虑两个原则:
处理大数据量利用合适的reduce数;使单个reduce任务处理数据量大小要合适。
(1)如果Reduce设置的过大,将会产生很多小文件,对NameNode会产生一定的影响,而且整个作业的运行时间未必会减少;
(2)如果Reduce设置的过小,单个Reduce处理的数据将会加大,很可能会引起OOM(out of memory)异常。
1.调整reduce个数方法一
#每个Reduce处理的数据量默认是256MB
hive.exec.reducers.bytes.per.reducer=256000000
#每个任务最大的reduce数,默认为1009
hive.exec.reducers.max=1009
(#计算reducer数的公式
N=min(参数2,总输入数据量/参数1))
2.调整reduce个数方法二
#设置每个job的Reduce个数
set mapreduce.job.reduces = 15;/set mapred.reduce.tasks = 15;
注意:
reduce数不是越多越好
1)过多的启动和初始化reduce会消耗时间和资源;
2)有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
小文件问题的影响
1.从Hive的角度看,小文件会产生很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。
788

被折叠的 条评论
为什么被折叠?



