题目
- 接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 感谢 Marcos 贡献此图。
示例:
输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6
思路
1.暴力,遍历位置 i 时,嵌套循环,找到位置 i 左右两边的最高度,计算每个位置接雨水的量
class Solution {
public int trap(int[] height) {
// 暴力,计算每个位置i的接雨水量时,
// 内嵌循环,计算位置i左边和右边的最大高度
if(height == null || height.length == 0) return 0;
int res = 0;
for(int i = 1; i < height.length - 1; i++) {
int leftMax = 0, rightMax = 0;
for(int j = i; j >= 0; j--) {
leftMax = Math.max(leftMax, height[j]);
}
for(int k = i; k < height.length; k++) {
rightMax = Math.max(rightMax, height[k]);
}
res += Math.min(leftMax, rightMax) - height[i];
}
return res;
}
}
2.dp, 先遍历height, 记录每个位置左右两边的最大高度, 再遍历依次height, 计算每个位置i能接雨水量
即记住每个位置左边和右边的最大值,不用每次到位置i时都要去找
class Solution {
public int trap(int[] height) {
// dp, 先遍历一遍height, 记录每个位置左边和右边的最大值,
// 不用每次到位置i , 都要内嵌一次循环寻找每个位置i 左边和右边的最大值
if(height == null || height.length == 0) return 0;
int n = height.length;
int[][] dp = new int[n][2];
dp[0][0] = height[0];
dp[n-1][1] = height[n-1];
int res = 0;
for(int i = 1; i < height.length; i++) {
dp[i][0] = Math.max(dp[i-1][0], height[i]);
}
for(int i = n - 2; i >= 0; i--) {
dp[i][1] = Math.max(dp[i+1][1], height[i]);
}
for(int i = 1; i < n - 1; i++) {
res += Math.min(dp[i][0], dp[i][1]) - height[i];
}
return res;
}
}
出错:
- dp[0][0] 不是0, dp[n-1][1]不是0
dp[0][0] = height[0];
dp[n-1][1] = height[n-1]; - 左边从第二个位置开始遍历,右边从倒数第二个位置开始遍历
for(int i = 1; i < height.length; i++)
for(int i = n - 2; i >= 0; i–)
3.双指针left++, right–,左右夹击遍历一次,根据leftMax一定是位置left左边的最大值,rightMax不一定是位置left右边的最大值;同理,rightMax一定是位置right右边的最大值,不一定是位置right左边的最大值;
当leftMax < rightMax, leftMax就一定是位置left左右两边的最大高度的较小者;因为位置left的右边高度最大值 >= rightMax;
class Solution {
public int trap(int[] height) {
// 双指针left, right,左右夹击遍历
// left: 当leftMax < rightMax , leftMax就是位置i的两边较小者
// right: 当ritghtMax > leftMax, rightMax就是位置i的两边较小者
if(height == null || height.length < 3) return 0;
int n = height.length;
int left = 1, right = n - 2;
int leftMax = height[0], rightMax = height[n-1];
int res = 0;
while(left <= right) {
if(leftMax < rightMax) {
res += Math.max(0, leftMax - height[left]);
leftMax = Math.max(leftMax, height[left]);
left++;
}else {
res += Math.max(0, rightMax - height[right]);
rightMax = Math.max(rightMax, height[right]);
right--;
}
}
return res;
}
}
4.单调栈,
// for遍历全部柱子
// 如果栈为空,则柱子直接入栈
// 如果元素小于栈顶的元素,入栈。
// 如果元素大于栈顶的元素,说明此时栈顶可以接雨水,因为栈内元素是递减的
// 栈顶下面的元素大于栈顶,新来的元素也大于栈顶,
// 弹出栈顶元素,计算接雨水的量
图:https://leetcode-cn.com/problems/trapping-rain-water/solution/dan-diao-zhan-jie-jue-jie-yu-shui-wen-ti-by-sweeti/
class Solution {
public int trap(int[] height) {
// 遍历柱子,当栈为空,或遍历到的柱子小于栈顶柱子高度时(这样栈顶才会可能接雨水)),柱子存入栈中
// 当遍历到的柱子高度大于栈顶柱子高度时,弹出栈顶柱子高度,去计算接雨水的量
if(height == null || height.length < 3) return 0;
int n = height.length;
Stack<Integer> stack = new Stack();
int res = 0;
for(int i = 0; i < n; i++) {
while(!stack.isEmpty() && height[i] > height[stack.peek()]) {
int buttomIndex = stack.pop();
while(!stack.isEmpty() && height[buttomIndex] == height[stack.peek()]) {
stack.pop();
}
if(!stack.isEmpty()) {
res += (Math.min(height[i], height[stack.peek()]) - height[buttomIndex]) * (i - stack.peek() - 1);
}
}
stack.push(i);
}
return res;
}
}