稀疏表示 字典学习 SMALLbox SPARCO toolbox

http://blog.sina.com.cn/s/blog_60dce3cd0100nxe8.html


做稀疏表示的有很多,不同的算法也被不断提出,有研究人员已经开始提出整合一个平台,用来对各种稀疏表示的解法进行比较,SPARCO是个很不错的工具箱,前几天刚发现了另外一个,SMALLbox,这个工具箱不仅用来比较各种稀疏表示的解法,而且把字典学习算法也融合了进去,以后搞稀疏的要开心了,呵呵,什么东西都是现成的了,只需要把数据准备好,字典学习有现成的,稀疏表示有现成的!

Sparse Models, Algorithm, and Learning for Large-scale data(SMALL)
作者:Remi Gfibonval  法国 INRIA
在Matlab中进行压缩感知研究或应用时,可以使用以下主要的工具包: 1. SPGL1:SPGL1是一种快速求解压缩感知问题的工具包,可在Matlab中使用。它提供了一系列的函数,包括求解具有稀疏约束的线性方程组、最小二乘问题、稀疏表示问题等。SPGL1能够有效地处理大规模的问题,并具有高精度和高性能的特点。 2. l1-MAGIC:l1-MAGIC是用于压缩感知研究的Matlab工具包,主要用于求解具有稀疏约束的优化问题。它包含了一系列函数,用于生成稀疏表示的测量矩阵、求解稀疏正则化问题、可表示理论和仿真等。l1-MAGIC能够快速准确地求解一系列压缩感知问题。 3. SPARCO:SPARCO是一个用于压缩感知算法的Matlab工具包。它提供了一系列的函数,包括一些常用的稀疏表达方法、重建算法和优化工具。SPARCO支持多种信号模型和约束条件,并具有高效的求解性能。 4. CVX:CVX是一个用于凸优化问题的建模和求解的Matlab工具包。在压缩感知领域,CVX常用于建立和求解凸优化问题,如对于稀疏表示问题和最小二乘问题等。它提供了简洁的语法和强大的求解能力,可以方便地进行各种压缩感知算法的研究和实现。 以上是一些常用的Matlab压缩感知工具包,它们提供了各种功能和算法,可以方便地进行压缩感知问题的研究和实验。在具体应用中,可以根据自己的需求选择合适的工具包进行使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值