【Noip2017 宝藏】

本文介绍了一个关于宝藏挖掘的算法挑战,旨在寻找连接多个宝藏屋的最优路径,通过状态压缩和记忆化搜索,实现最小化工程总代价的目标。文章详细解释了问题背景、输入输出格式、算法思路及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

  参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。

  小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。

  小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

  在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。

  新开发一条道路的代价是:L×K

  L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。

  请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。

输入格式:

  第一行两个用空格分离的正整数 n 和 m,代表宝藏屋的个数和道路数。

  接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1~n),和这条道路的长度 v。

输出格式:

   输出共一行,一个正整数,表示最小的总代价。

输入输出格式:

 输入样例1: 
  4 5 
  1 2 1 
  1 3 3 
  1 4 1 
  2 3 4 
  3 4 1 
 
 输出样例1:
  4
 输入样例2:
  4 5 
  1 2 1 
  1 3 3 
  1 4 1 
  2 3 4 
  3 4 2  
 输出样例2:
  5

题解:

  先说说考场想法吧,一眼dfs然后感觉不行,然后状压,然后过不了大样例,然后调不过系列。

  于是写了贪心,至少感觉挺对的。对于每个点开始做prim,动态修改dep。洛谷80,tyvj85,CCF45。

  正解的话(我还是感觉有问题的正解)就是状态压缩一下,做记忆化搜索。每次找一个点开始,然后用这个状态已经到的点去更新状态,动态更新dep(问题就是这里,不管了反正CCF数据能过)。

 1 #include<iostream>
 2 #include<cstdlib>
 3 #include<cstring>
 4 #include<cstdio>
 5 using namespace std;
 6 int n,m,v[15][15];
 7 int f[1<<16];
 8 int dep[15];
 9 inline void dfs(int S)
10 {
11     for(int i=1;i<=n;i++){
12         if((S&(1<<(i-1)))==0){
13             for(int j=1;j<=n;j++){
14                 if((S&(1<<(j-1)))!=0 && v[j][i]!=999999+7){
15                     if(f[S]+dep[j]*v[j][i]<f[S|(1<<(i-1))]){
16                         f[S|(1<<(i-1))]=f[S]+dep[j]*v[j][i];
17                         dep[i]=dep[j]+1;
18                         dfs((S|(1<<(i-1))));
19                     }
20                 }
21             }
22         }
23     }
24 }
25 int main(){
26     int x,y,z;
27     scanf("%d%d",&n,&m);
28     for(int i=1;i<=n;i++)
29         for(int j=1;j<=n;j++)
30             v[i][j]=999999+7;
31     for(int i=1;i<=m;i++){
32         scanf("%d%d%d",&x,&y,&z);
33         v[x][y]=v[y][x]=min(v[x][y],z);
34     }
35     int ans=999999+7;
36     for(int s=1;s<=n;s++){
37         for(int i=1;i<=n;i++)    dep[i]=0;
38         dep[s]=1;
39         for(int i=0;i<(1<<n);i++)    f[i]=999999+7;
40         f[1<<(s-1)]=0;dfs((1<<(s-1)));
41         ans=min(ans,f[(1<<n)-1]);
42     }
43     printf("%d\n",ans);
44     return 0;
45 }

 

转载于:https://www.cnblogs.com/Dndlns/p/7885209.html

内容概要:本文详细介绍了多种常见的软件生命周期模型及其特点,包括瀑布模型、增量模型、敏捷模型、螺旋模型、原型模型、V模型、喷泉模型、RUP(统一过)、极限编(XP)等。每种模型都有其适用场景和独特优势。例如,瀑布模型适用于需求明确且稳定的项目,强调阶段顺序性和严格性;增量模型允许逐步增加功能,每次增量提供可运行的部分;敏捷模型强调快速响应变化,通过迭代和持续改进确保用户参与;螺旋模型结合了瀑布和增量模型的优点,特别适合处理不确定性和风险较大的项目;原型模型则适用于需求不明确的情况,通过快速构建原型获取用户反馈。此外,文中还介绍了Scrum框架、极限编等具体实践方法,以及各模型在不同阶段的活动和交付物。 适合人群:本文适合对软件开发有一定了解的研发人员、项目经理及软件工师,特别是那些希望深入了解不同软件生命周期模型的特点和应用场景的人士。 使用场景及目标:①帮助读者理解各种软件生命周期模型的优缺点;②指导项目团队根据项目需求选择合适的生命周期模型;③提供具体实践方法和工具,如Scrum框架、极限编等,以提升项目管理和开发效率。 其他说明:本文不仅解释了各个模型的基本概念和适用条件,还通过对比分析帮助读者更好地理解和选择最适合的模型。对于希望优化项目流、提高软件质量的团队来说,本文提供了宝贵的参考和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部

登录后您可以享受以下权益:

×